Reaction of the tris-chelating hexadentate podand ligand tris[3-(2-pyridyl)pyrazol-1-yl]hydroborate (Tp(Py)) with [Cu(MeCN)(4)][PF(6)] affords [Cu(I)(3)(Tp(Py))(2)][PF(6)] (1), which was crystallographically characterized. 1.(MeCN)(2): C(52)H(44)B(2)Cu(3)F(6)N(20)P, orthorhombic, Pna2(1); a = 24.592(7), b = 16.392(5), c = 13.365(5) Å; Z = 4. Each Cu(I) ion is four coordinated by one N,N '-bidentate arm from each ligand; each ligand therefore donates each bidentate arm to a different Cu(I) ion. The isosceles triangular arrangement of Cu(I) ions with N-donor ligands is reminiscent of the tricopper(I) site of ascorbate oxidase. One-electron oxidation of 1 affords the Cu(I)(2)Cu(II) complex [Cu(3)(Tp(Py))(2)][PF(6)](2) (2). The potentials of the Cu(I)/Cu(II) redox couples are affected by the ease with which the accompanying geometric rearrangement can occur. Thus, the first oxidation of 1 is facile (-0.52 V vs the ferrocene/ferrocenium couple, Fc/Fc(+)), but as a result of the concomitant structural rearrangement the second oxidation is rendered much more difficult (+0.12 V vsFc/Fc(+)) and results in slow decomposition of the product. A third oxidation does not occur at accessible potentials. This complex therefore exhibits negative cooperative behavior, in which the geometric change accompanying one metal-based redox change hinders further redox changes at other sites via an allosteric effect. EPR studies on the mixed-valence complex 2 show that in frozen glasses below 120 K the unpaired electron is delocalized over two metal centers (7-line spectrum), but above 160 K the electron becomes localized and gives a simple axial spectrum. The electronic spectrum of 2 in solution shows an intense band at 910 nm (epsilon 2100 dm(3) mol(-)(1) cm(-)(1)) which we believe to be an IVCT band. The combination of EPR and electronic spectral studies show that 2 is class III (fully delocalized over 2 centers) below 120 K but class II (localized but strongly interacting) at higher temperatures.
An eleven-vertex manganese-monocarbaborane dianion, upon one-electron oxidation, gives a stable radical monoanion in which the unpaired electron is delocalized over the cluster.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.