Poor growth of crops after long fallows (> 12 months) in cracking clay soils of the northern areas of the Australian grain belt is known as 'long fallow disorder'. Various crop species, including wheat (Triticum aestivum L.), chickpea (Cicer arietinum L.), grain sorghum [Sorghum bicolor (L.) Moench], sudan grass [Sorghum sudanense (Piper) Stapf], sunflower (Helianthus annuus L.), soybean [Glycine max (L.) Merr.] and maize (Zea mays L.), had less root colonization with vesicular-arbuscular mycorrhizal (VAM) fungi and plant weight after long fallows than after short fallows. An experiment was conducted with a phosphorus-deficient soil that had been either fallowed for 3 years or sequentially cropped to cotton, sorghum and sunflower. Cropped soil had more mycorrhizal propagules consisting of intact spores and colonized roots than long fallow soil. In the glasshouse, mycorrhizal colonization of sunflower (cv. Hysun 33) developed quickly in previously cropped soil to peak at 80% of root length at 72 days (flowering), but in long fallow soil it proceeded slowly, attaining 35% of root length at 72 days. Inoculation of long fallow soil with 20% w/w cropped soil resulted in extensive root colonization (89% at 72 days), eliminated P deficiency symptoms and more than doubled plant growth and final P uptake. Inoculation with similar soil treated with gamma radiation to kill propagules of mycorrhizal fungi had no effect on plant growth. Sunflower grew extremely poorly in irradiated soil with considerable leaf necrosis due to P deficiency. Reinoculation with cropped soil resulted In high levels of mycorrhizal colonization and good plant growth. It was concluded that long fallow disorder is caused by a decline in viable propagules of mycorrhizal fungi during fallowing, resulting in poor root colonization and symbiotic effectiveness of a subsequent crop. Fertilizing with phosphorus (50 mg P/kg soil) delayed the development of mycorrhizal colonization, but increased final lengths of colonized roots at 72 days. Zinc fertilizer (15 mg Zn/kg soil) slightly improved mycorrhizal colonization, and basal fertilizer (N, K, S, Ca) substantially improved colonization in long fallow soil inoculated with cropped soil.
Two models that differ markedly in how they represent the crop-soil system have been used to simulate soil processes and crop production in the long-term experiment at Hermitage Research Station, Warwick, Queensland. The experiment was designed to examine the effects of tillage, stubble management, and nitrogen (N) fertiliser on the productivity of a winter cereal-summer fallow cropping system. it commenced in 1968 and the treatments have been maintained until the present. CENTURY operates on a monthly time step, considers all soil N transformations to occur in a single soil layer, and has a very simple crop growth routine that does not deal with crop phenology. APSIM provides a framework whereby a model of a cropping system is configured from component modules, which operate on a daily time step. For simulating the Hermitage experiment, modules to represent the dynamics of soil-water, N, surface residues, and growth of a wheat crop were used. The water and N modules deal with a multi-layered soil, whilst the wheat module develops leaf area, intercepts light, and accumulates and partitions dry matter in response to weather, soil-water, and N. Both models were specified to simulate the whole experimental period (1969-92) as a continuous run. The ability of these models to simulate grain yields, soil-water and drainage, nitrate-N, and soil organic matter were examined. Both models predict, in agreement with the observed data, that for this continuous cereal cropping system there has been a decline in soil organic matter for all the treatments and a reduction through time in the capacity of the soil to mineralise and accumulate nitrate during the fallows. CENTURY performed better than APSIM in predicting the relative yields of the N treatments but was less satisfactory than APSIM for absolute grain yield, soil-water, and drainage. Yield predictions with APSIM were sensitive to carry-over errors in the water balance from one season to the next, so that in some seasons large errors occurred in the predicted relative yields. Both models reproduced the observations well enough to indicate their suitability for providing useful insights into the behaviour of cropping systems where the focus is on depletion of soil fertility.
The presence of vesicular-arbuscular mycorrhizal (VAM) fungi in long-term cane-growing fields associated with yield decline led to the supposition that VAM fungi may be responsible for the poor yields. A glasshouse trial was established to test the effectiveness of a species of VAM fungi, Glomus clarum, extracted from one of these North Queensland fields on the growth of sugarcane (Saccharum interspecific hybrid), maize (Zea mays), and soybean (Glycine max) for 6 phosphorus (P) rates (0, 2.7, 8.2, 25, 74, 222 mg/kg). For maize and soybean plants that received VAM (+VAM), root colonisation was associated with enhanced P uptake, improved dry weight (DW) production, and higher index tissue-P concentrations than those without VAM (–VAM). By comparing DW responses of maize and soybean for different P rates, savings in fertiliser P of up to 160 and 213 kg/ha, respectively, were realised. Sugarcane plants were generally less responsive. Apart from a 30% DW increase with VAM when 2.7 mg P/kg was added, DW of +VAM plants was equivalent to, or worse than in the case of 222 mg P/kg, DW of –VAM plants. For all 3 host species, colonisation was least at the highest P application, presumably from excessive P within the plant tissue. Critical P concentrations for the 3 host species were below those reported elsewhere, and for soybean and sugarcane, the critical concentration for +VAM plants was lower than that of –VAM plants. There are 3 implications that arise from this study. First, VAM fungi present in cane-growing soils can promote the growth of maize and soybean, which are potential rotation crops, over a range of P levels. Second, the mycorrhizal strain taken from this site did not generally contribute to a yield decline in sugarcane plants. Third, application of P fertiliser is not necessary for sugarcane when acid-extractable P is <30 mg/kg if sufficient VAM propagules are present, or mp;lt;47 mg/kg if a mycorrhizal response is not anticipated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.