Capacitative Ca2+ entry links the emptying of intracellular Ca2+ stores to the activation of store-operated Ca2+ channels in the plasma membrane. In the twenty years since the inception of the concept of capacitative Ca2+ entry, a number of activation mechanisms have been proposed, and there has been considerable interest in the possibility that TRP channels function as store-operated channels. However, in the past two years, two major players in both the signaling and permeation mechanisms for store-operated channels have been discovered: Stim1 and the Orai proteins. Stim1 is an endoplasmic reticulum Ca2+ sensor. It appears to act by redistributing within a small component of the endoplasmic reticulum, approaching the plasma membrane, but does not seem to translocate into the plasma membrane. Stim1 signals to plasma membrane Orai proteins, which constitute pore-forming subunits of store-operated channels.
A major mechanism whereby calcium entry into cells is regulated is the store-operated or capacitative calcium entry pathway. In this article, two basic issues are discussed: (i) the methods investigators use to measure store-operated entry, and (ii) the role played by the store-operated pathway in responses to hormones and neurotransmitters under physiological conditions. The two topics are considered together because they are closely interrelated; as we begin to ask questions about calcium movements at low concentrations of agonists, the technology to measure these movements becomes increasing challenging.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.