Plasma amino acid levels have never been studied in the placental intervillous space of preterm gestations. Our objective was to determine the possible relationship between plasma amino acids of maternal venous blood (M), of the placental intervillous space (PIVS) and of the umbilical vein (UV) of preterm newborn infants. Plasma amino acid levels were analyzed by ion-exchange chromatography in M from 14 parturients and in the PIVS and UV of their preterm newborn infants. Mean gestational age was 34 ± 2 weeks, weight = 1827 ± 510 g, and all newborns were considered adequate for gestational age. The mean Apgar score was 8 and 9 at the first and fifth minutes. Plasma amino acid values were significantly lower in M than in PIVS (166%), except for aminobutyric acid. On average, plasma amino acid levels were significantly higher in UV than in M (107%) and were closer to PIVS than to M values, except for cystine and aminobutyric acid (P < 0.05). Comparison of the mean plasma amino acid concentrations in the UV of preterm to those of term newborn infants previously studied by our group showed no significant difference, except for proline (P < 0.05), preterm > term. These data suggest that the mechanisms of active amino acid transport are centralized in the syncytiotrophoblast, with their passage to the fetus being an active bidirectional process with asymmetric efflux. PIVS could be a reserve amino acid space for the protection of the fetal compartment from inadequate maternal amino acid variations. Correspondence
The objective of this study was to observe possible interactions between the renin-angiotensin and nitrergic systems in chronic hypoxia-induced pulmonary hypertension in newborn piglets. Thirteen chronically instrumented newborn piglets (6.3 ± 0.9 days; 2369 ± 491 g) were randomly assigned to receive saline (placebo, P) or the AT1 receptor (AT1-R) blocker L-158,809 (L) during 6 days of hypoxia (FiO2 = 0.12). During hypoxia, pulmonary arterial pressure (Ppa; P < 0.0001), pulmonary vascular resistance (PVR; P < 0.02) and the pulmonary to systemic vascular resistance ratio (PVR/SVR; P < 0.05) were significantly attenuated in the L (N = 7) group compared to the P group (N = 6). Western blot analysis of lung proteins showed a significant decrease of endothelial NOS (eNOS) in both P and L animals, and of AT1-R in P animals during hypoxia compared to normoxic animals (C group, N = 5; P < 0.01 for all groups). AT1-R tended to decrease in L animals. Inducible NOS (iNOS) did not differ among P, L, and C animals and iNOS immunohistochemical staining in macrophages was significantly more intense in L than in P animals (P < 0.01). The vascular endothelium showed moderate or strong eNOS and AT1-R staining. Macrophages and pneumocytes showed moderate or strong iNOS and AT1-R staining, but C animals showed weak iNOS and AT1-R staining. Macrophages of L and P animals showed moderate and weak AT2-R staining, respectively, but the endothelium of all groups only showed weak staining. In conclusion, pulmonary hypertension induced by chronic hypoxia in newborn piglets is partially attenuated by AT1-R blockade. We suggest that AT1-R blockade might act through AT2-R and/or Mas receptors and the nitrergic system in the lungs of hypoxemic newborn piglets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.