Extracellular vesicles (EVs) have been shown to carry microbial components and function in the host defense against infections. In this study, we demonstrate that Mycobacterium tuberculosis (M.tb) RNA is delivered into macrophage-derived EVs through an M.tb SecA2-dependent pathway, and that EVs released from M.tb-infected macrophages stimulate a host RIG-I/MAVS/TBK1/IRF3 RNA sensing pathway, leading to type I interferon production in recipient cells. These EVs also promote, in a RIG-I/MAVS-dependent manner, the maturation of M.tbcontaining phagosomes through a noncanonical LC3 modification, leading to increased bacterial killing. Moreover, treatment of M.tb-infected macrophages or mice with a combination of moxifloxacin and EVs, isolated from M.tb-infected macrophages, significantly lowered bacterial burden relative to either treatment alone. We propose that EVs, which are preferentially removed by macrophages in vivo, may be developed in combination with effective antibiotics as a novel approach to treat drug-resistant TB.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.