Luteolin has been shown to possess antitumorigenic, antioxidant, and anti-inflammatory properties. In the present study, we investigated the protective mechanism of luteolin against cisplatin-induced apoptosis in auditory (House Ear Institute-Organ of Corti 1 [HEI-OC1]) cells. Luteolin was found to induce the expression of heme oxygenase-1 (HO-1) in a dose- and time-dependent manner. Luteolin also activated the extracellular signal-regulated kinase (ERK) mitogen-activated protein kinase pathway, which plays an important role in the expression of HO-1. Luteolin protected the cells against cisplatin-induced apoptotic cell death. The protective effect of luteolin was abrogated by zinc protoporphyrin IX (ZnPP IX), an HO inhibitor, and antisense oligodeoxynucleotides against the HO-1 gene. Furthermore, pretreatment with luteolin inhibited the activation of caspase-3 and the mitochondrial dysfunction, and the effect of luteolin on the activation of caspase-3 disappeared in the presence of ZnPP IX or PD098059. These results demonstrate that the expression of HO-1 by luteolin is mediated by the ERK pathway, and also that the activating of HO-1 inhibits cisplatin-induced apoptosis in HEI-OC1 1 cells.
In this study, we examined the protective effects of Caesalpinia sappan L. and its major component, brazilin, against tert-butylhydroperoxide (t-BHP)-induced cell death in House Ear Institute-Organ of Corti 1 (HEI-OC1) cells. We found that the extract of C. sappan L. and brazilin induced antioxidant response element (ARE)-luciferase activity and heme oxygenase-1 (HO-1) expression in a concentration-dependent manner. The inductive effect of brazilin was more potent than the extract of C. sappan L. and the expression of HO-1 reached a peak at 12 h after brazilin treatment. The extract and brazilin protected the cells against t-BHP-induced cell death. Their protective effects were abrogated by zinc protoporphyrin IX (ZnPP IX), a HO inhibitor. These results demonstrate that the extract of C. sappan L. and brazilin induce the expression of HO-1 and the enzyme diminishes t-BHP-induced cell death in HEI-OC1 cells.
Piperine is a major component of black pepper, Piper nigrum Linn, used widely in traditional medicine. In this study, we examined whether piperine could protect HEI‐OC1 cells against cisplatin‐induced apoptosis through the induction of heme oxygenase‐1 (HO‐1) expression. Piperine induced the expression of HO‐1 in dose‐ and time‐dependent manner. Piperine also induced ARE‐luciferase and translocated Nrf2 to nucleus. Piperine activated the JNK, ERK, and p38 mitogen‐activated protein kinases (MAPKs) pathways, and the JNK pathway played an important role in piperine‐induced HO‐1 expression. Piperine protected the cells against cisplatin‐induced apoptosis. The protective effect of piperine was abrogated by zinc protoporphyrin IX (ZnPP IX), a HO inhibitor, and antisense oligdeoxynuceotides (ODN) against HO‐1 gene. These results demonstrate that the expression of HO‐1 by piperine is mediated by both JNK pathway and Nrf2, and the expression inhibits cisplatin‐induced apoptosis in HEI‐OC1 cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.