Frequency response signals have been used for the non-destructive evaluation of many different structures and for the integrity evaluation of porcelain insulators. However, it is difficult to accurately estimate the integrity of porcelain insulators under various environmental conditions only by using general frequency response signals. Therefore, this study used a method that extracted several features that can be derived from the frequency response signal and reduced their dimensions to select features suitable for the evaluation of the soundness of porcelain insulators. The latest machine learning techniques were used to identify correlations and not for basic feature analyses. Two machine learning models were developed using the support vector machine and ensemble methods in MATLAB. Both models showed high reliability in distinguishing between normal and defective porcelain insulators, and they could visualize the distribution area of the data by extracting quantitative values and applying machine learning, rather than simply verifying the frequency response signal.
More than 55% of porcelain insulators installed throughout Korea have exceeded their service life. Hence, utilities are extremely interested in determining the robustness of insulators in their systems. In this study, the identification of the peak ranges in the main natural modes by frequency response analysis, the principal component analysis (PCA) method by feature extraction in the time and frequency domains for the damage detection of porcelain insulators are investigated; among these, the PCA method, which utilizes frequency response data, is proposed for defect classification. The 67 porcelain insulators are secured as specimens from 154 kV transmission towers installed in various parts of Korea; their main materials are cristobalite and alumina. In these specimens, it is observed that the three types of damage, such as porcelain damage, cap damage, and internal damage, are those that are typically found in actual sites. Accordingly, the use of two eigenvectors (moments of real value and moments of imaginary value) considerably aids in the analysis of principal components. With the frequency response data, the material and damage types are found to be distinguishable. The classification accuracy is increased by including the third largest eigenvector (area of real value) in three-dimensional analysis. By employing frequency response data, the PCA method provides useful information for assessing the integrity of porcelain insulators; it may be used as basis for future machine learning applications.
The most common method for inspection of insulators is to measure the change of electrical characteristics such as electric resistance and partial discharge. However, even if there is no physical damage, these values vary depending on the temperature, humidity, and chloride content of the atmosphere. In this respect, an alternative to such methods can be the impact response test, and a frequency response function (FRF) obtained from the test has been widely used as a tool for damage detection. In this study the FRF was applied to identify the cap damage of porcelain insulators. In addition, to solve the danger of high voltage and poor field accessibility near the insulator, a device with high field applicability was developed to measure FRF from a long distance using an auto impact hammer and Micro Electro Mechanical Systems (MEMS) technology. Even though the FRF is most suitable for inspection of porcelain insulators, dynamic characteristics such as natural frequencies may vary depending on manufacturing errors, installation conditions, etc., which may cause difficulties in damage identification. To overcome this limitation, the machine learning (ML) method was applied in this study to provide a diagnostic method that ensured consistent and accurate judgment. As a result of predicting the normal and the cap damage data using the support vector machine (SVM), bagging, k-nearest neighbor (kNN), and discriminant analysis (DA) methods, the overall F1 score was over 87% and the bagging method achieved the highest accuracy. In this study, the frequency range and dynamic characteristics that are sensitive to the physical damage of the insulator were derived and, based on this, the optimum ML methods with improved equipment could provide analysis with higher accuracy and consistency than general analysis using the FRF.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.