Background Errors in counting spinal segments are common during interventional procedures when there are transitional vertebrae. In this study, we investigated the prevalence of the transitional vertebrae including thoracolumbar transitional vertebra (TLTV) and lumbosacral transitional vertebrae (LSTV). The relationship between the existence of TLTV and abnormal rib count or the existence of LSTV were also evaluated. Methods The vertebral levels were counted craniocaudally, starting from C1, based on the assumption of 7 cervical, 12 thoracic, and 5 lumbar vertebrae, using whole spine spiral three-dimensional computed tomographic images. The 20th and 25th vertebrae were defined as L1 and S1, respectively. Results In total, 150 patients had TLTV, with a prevalence of 11.2% (150/1,340). LSTV was observed in 111 of 1,340 cases (8.3%). Sacralization was observed in 68 of 1,340 cases (5.1%) and lumbarization in 43 of 1,340 cases (3.2%). There was a significant relationship between the existence of TLTV and the abnormal rib count (odds ratio [OR]: 117.26, 95% confidence interval [95% CI]: 60.77–226.27; P < 0.001) and LSTV (OR: 7.38, 95% CI: 3.99–13.63; P < 0.001). Conclusions Our study results suggest that patients with TLTV are more likely to have an abnormal rib count or LSTV. If a TLTV or LSTV is seen on the fluoroscopic image, a whole spine image is necessary to permit accurate numbering of the lumbar vertebra.
Background: Herpes zoster (HZ) is strongly associated with decreased immune function, a factor of cancer development. Previous studies suggested inconsistent results regarding the association between HZ and increased cancer risk. We aimed to analyze the association between HZ and specific cancer risk. Methods: Of 134,454 patients diagnosed with HZ between 2002 and 2015, 81,993 HZ patients were matched 1:1 with non-HZ individuals by age, sex, and Charlson comorbidity index. Both groups were examined at 1, 3, and 5 years for cancer diagnosis. A Cox proportional hazard regression model was used to estimate cancer risk in both groups. The postherpetic neuralgia (PHN) and non-HZ groups were compared for specific cancer risk. Results: The HZ group showed a slightly decreased overall cancer risk compared with the non-HZ group (hazard ratio [HR] 0.94, 95% confidence interval [CI] 0.90–0.97, p = 0.002). The HRs for specific cancer risk were 0.41 (95% CI, 0.33–0.50, p < 0.001); 0.86 (95% CI, 0.81–0.91, p < 0.001); 0.87 (95% CI, 0.78–0.97, p = 0.014); 0.80 (95% CI 0.73–0.87, p < 0.001); 1.20 (95% CI, 1.07–1.34, p = 0.001); and 1.66 (95% CI, 1.35–2.03, p < 0.001) for cancers of the lips, mouth, and pharynx; digestive system; respiratory system; unknown secondary and unspecified sites; thyroid and endocrine glands; and lymphoid and hematopoietic systems, respectively. The HZ with PHN group showed higher HR for specific cancer risk, such as lymphoid and hematopoietic systems (95% CI, 1.27–2.39, p < 0.001). Conclusion: HZ was associated with increased or decreased incidence of specific cancers. PHN further increased the risk of developing certain cancers in HZ patients.
BackgroundThis study aimed to evaluate the effects of hypercarbia on arterial oxygenation during one-lung ventilation (OLV).MethodsFifty adult patients undergoing elective video-assisted thoracoscopic lobectomy or pneumonectomy were enrolled. Group I patients (n = 25) were first maintained at normocarbia (PaCO2: 38‒42 mmHg) for 30 min and then at hypercarbia (45‒50 mmHg). In Group II patients (n = 25), PaCO2 was maintained in the reverse order. Arterial oxygen partial pressure (PaO2), respiratory variables, hemodynamic variables, and hemoglobin concentration were compared during normocarbia and hypercarbia. Arterial O2 content and O2 delivery were calculated.ResultsPaO2 values during normocarbia and hypercarbia were 66.5 ± 10.6 and 79.7 ± 17.3 mmHg, respectively (mean difference: 13.2 mmHg, 95% CI for difference of means: 17.0 to 9.3, P < 0.001). SaO2 values during normocarbia and hypercarbia were 92.5 ± 4.8% and 94.3 ± 3.1% (P = 0.009), respectively. Static compliance of the lung (33.0 ± 5.4 vs. 30.4 ± 5.3 ml/cmH2O, P < 0.001), arterial O2 content (15.4 ± 1.4 vs. 14.9 ± 1.5 ml/dl, P < 0.001) and O2 delivery (69.9 ± 18.4 vs. 65.1 ± 18.1 ml/min, P < 0.001) were significantly higher during hypercarbia than during normocarbia.ConclusionsHypercarbia increases PaO2 and O2 carrying capacity and improves pulmonary mechanics during OLV, suggesting that it may help manage oxygenation during OLV. Therefore, permissive hypercarbia may be a simple and valuable modality to manage arterial oxygenation during OLV.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.