Path planning for robot arms to reach a target and avoid obstacles has had a crucial role in manufacturing automation. Although many path planning algorithms, including RRT, APF, PRM, and RL-based, have been presented, they have many problems: a time-consuming process, high computational costs, slowness, non-optimal paths, irregular paths, failure to find a path, and complexity. Scholars have tried to address some of these issues. However, those methods still suffer from slowness and complexity. In order to address these two limitations, this paper presents a new hybrid path planning method that contains two separate parts: action-finding (active approach) and angle-finding (passive approach). In the active phase, the Q-learning algorithm is used to find a sequence of simple actions, including up, down, left, and right, to reach the target cell in a gridded workspace. In the passive phase, the joints angles of the robot arm, with respect to the found actions, are obtained by the trained neural network. The simulation and test results show that this hybrid approach significantly improves the slowness and complexity due to using the simplified agent-environment interaction in the active phase and simple computing the joints angles in the passive phase.
Computer vision-based path planning can play a crucial role in numerous technologically driven smart applications. Although various path planning methods have been proposed, limitations, such as unreliable three-dimensional (3D) localization of objects in a workspace, time-consuming computational processes, and limited two-dimensional workspaces, remain. Studies to address these problems have achieved some success, but many of these problems persist. Therefore, in this study, which is an extension of our previous paper, a novel path planning approach that combined computer vision, Q-learning, and neural networks was developed to overcome these limitations. The proposed computer vision-neural network algorithm was fed by two images from two views to obtain accurate spatial coordinates of objects in real time. Next, Q-learning was used to determine a sequence of simple actions: up, down, left, right, backward, and forward, from the start point to the target point in a 3D workspace. Finally, a trained neural network was used to determine a sequence of joint angles according to the identified actions. Simulation and experimental test results revealed that the proposed combination of 3D object detection, an agent-environment interaction in the Q-learning phase, and simple joint angle computation by trained neural networks considerably alleviated the limitations of previous studies.
The purpose of this study is to develop a BIM-based plug-in that is able to assist a collaboration among heterogeneous professionals.The tool will enable them to communicate in the same language, articulate criteria and priorities in multiple perspectives, and to share rapidly simulated evaluations of schematic design variations. Among many barriers that block collaborations among professionals, a quintessential barrier in the building and design industries may be epistemological rather than physical.The professionally different ways of thinking, expertise, values, and priorities can be a block on the collaborative development process of architectural design projects. This paper takes the example of the relationship between developers and architects, who tend to have different evaluation criteria. A real-time value simulation tool is introduced as a means to generate possible building typologies on a given project site, with computation of expected total values expressed in simple financial terms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.