Undesirable toxicity is one of the main reasons for withdrawing drugs from the market or eliminating them as candidates in clinical trials. Although numerous studies have attempted to identify biomarkers capable of predicting pharmacotoxicity, few have attempted to discover robust biomarkers that are coherent across various species and experimental settings. To identify such biomarkers, we conducted meta-analyses of massive gene expression profiles for 6,567 in vivo rat samples and 453 compounds. After applying rigorous feature reduction procedures, our analyses identified 18 genes to be related with toxicity upon comparisons of untreated versus treated and innocuous versus toxic specimens of kidney, liver and heart tissue. We then independently validated these genes in human cell lines. In doing so, we found several of these genes to be coherently regulated in both in vivo rat specimens and in human cell lines. Specifically, mRNA expression of neuronal regeneration-related protein was robustly down-regulated in both liver and kidney cells, while mRNA expression of cathepsin D was commonly up-regulated in liver cells after exposure to toxic concentrations of chemical compounds. Use of these novel toxicity biomarkers may enhance the efficiency of screening for safe lead compounds in early-phase drug development prior to animal testing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.