Despite the impact of bovine group A rotaviruses (GARVs) as economically important and zoonotic pathogens, there is a scarcity of data on cross-species pathogenicity and extra-intestinal spread of bovine reassortant GARVs. During the course of characterizing the genotypes of all 11 genomic segments of bovine GARVs isolated from diarrheic calves in South Korea, a unique G6P[7] reassortant GARV strain (KJ9-1) was isolated. The strain harbors five bovine-like gene segments (VP7: G6; VP6: I2; VP1: R2; VP3: M2; NSP2: N2, and NSP4: E2), five porcine-like gene segments (VP4: P[7]; NSP1: A1; NSP3: T1, and NSP5: H1), and one human-like gene segment (VP2: C2). To investigate if this reassortant strain possessed cross-species pathogenicity in calves and piglets, and could induce viremia and extra-intestinal spread in calves, colostrum-deprived calves and piglets were experimentally inoculated with the KJ9-1 strain. The KJ9-1 strain caused severe diarrhea in experimentally infected calves with extensive intestinal villous atrophy, but replicated without causing clinical symptoms in experimentally infected piglets. By SYBR Green real-time RT-PCR, viral RNA was detected in sera of the calves at post-inoculation day (PID) 1, reaching a peak at PID3, and then rapidly decreasing from PID4. In addition, viral RNA was detected in the mesenteric lymph node, lungs, liver, choroid plexus, and cerebrospinal fluid. An immunofluorescence assay confirmed viral replication in the extra-intestinal organs and tissues of virus-inoculated calves. The data indicates that the homologous/heterologous origin of the NSP4 gene segment (E2 genotype), may play a key role in the ability to cause diarrhea in calves and piglets.
The receptor(s) for porcine sapelovirus (PSV), which causes diarrhea, pneumonia, polioencephalomyelitis, and reproductive disorders in pigs, remains largely unknown. Given the precedent for other picornaviruses which use terminal sialic acids (SAs) as receptors, we examined the role of SAs in PSV binding and infection. Using a variety of approaches, including treating cells with a carbohydrate-destroying chemical (NaIO4), mono- or oligosaccharides (N-acetylneuraminic acid, galactose, and 6′-sialyllactose), linkage-specific sialidases (neuraminidase and sialidase S), lectins (Maakia amurensis lectin and Sambucus nigra lectin), proteases (trypsin and chymotrypsin), and glucosylceramide synthase inhibitors (dl-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol and phospholipase C), we demonstrated that PSV could recognize α2,3-linked SA on glycolipids as a receptor. On the other hand, PSVs had no binding affinity for synthetic histo-blood group antigens (HBGAs), suggesting that PSVs could not use HBGAs as receptors. Depletion of cell surface glycolipids followed by reconstitution studies indicated that GD1a ganglioside, but not other gangliosides, could restore PSV binding and infection, further confirming α2,3-linked SA on GD1a as a PSV receptor. Our results could provide significant information on the understanding of the life cycle of sapelovirus and other picornaviruses. For the broader community in the area of pathogens and pathogenesis, these findings and insights could contribute to the development of affordable, useful, and efficient drugs for anti-sapelovirus therapy.IMPORTANCE The porcine sapelovirus (PSV) is known to cause enteritis, pneumonia, polioencephalomyelitis, and reproductive disorders in pigs. However, the receptor(s) that the PSV utilizes to enter host cells remains largely unknown. Using a variety of approaches, we showed that α2,3-linked terminal sialic acid (SA) on the cell surface GD1a ganglioside could be used for PSV binding and infection as a receptor. On the other hand, histo-blood group antigens also present in the cell surface carbohydrates could not be utilized as PSV receptors for binding and infection. These findings should contribute to the understanding of the sapelovirus life cycle and to the development of affordable, useful and efficient drugs for anti-sapelovirus therapy.
BackgroundOptimal head and neck positioning and clinical experience are important factors for successful endotracheal intubation in patients with a difficult airway. This study aimed to investigate the rate of successful endotracheal intubation between the sniffing and ramped positions in patients with an expected difficult intubation.MethodsThe study included 204 patients with an expected difficult intubation (airway difficulty score ≥ 8) based on the preoperative airway assessment. The patients were randomized into the following groups: group S was placed in the sniffing position, and group R was placed in the ramped position during direct laryngoscopy. The primary outcome was successful endotracheal intubation and the secondary measure was laryngeal view in the ramped or sniffing position when the operating table was placed at two different heights.ResultsGroup R showed a higher rate of successful endotracheal intubation and better laryngeal view than group S (P < 0.05). The rate of successful endotracheal intubation was higher in group R than in group S at both heights of the operating table; but, it was not different within each group. Laryngeal view was not different between the two groups and within each group when the two heights of the operating table were used. Fully trained and experienced attending anesthesiologists achieved a higher rate of successful endotracheal intubation than less experienced residents in group R (P < 0.05) but not in group S.ConclusionsRamped position and clinical experience can be important factors for laryngeal view and success rate of endotracheal intubation in patients with an expected difficult intubation.
Major calcifications are of great concern when performing percutaneous coronary interventions because they inhibit proper stent deployment. We created a comprehensive software to segment calcifications in intravascular optical coherence tomography (IVOCT) images and to calculate their impact using the stentdeployment calcification score, as reported by Fujino et al. We segmented the vascular lumen and calcifications using the pretrained SegNet, convolutional neural network, which was refined for our task. We cleaned segmentation results using conditional random field processing. We evaluated the method on manually annotated IVOCT volumes of interest (VOIs) without lesions and with calcifications, lipidous, or mixed lesions. The dataset included 48 VOIs taken from 34 clinical pullbacks, giving a total of 2640 in vivo images. Annotations were determined from consensus between two expert analysts. Keeping VOIs intact, we performed 10-fold cross-validation over all data. Following segmentation noise cleaning, we obtained sensitivities of 0.85 AE 0.04, 0.99 AE 0.01, and 0.97 AE 0.01 for calcified, lumen, and other tissue classes, respectively. From segmented regions, we automatically determined calcification depth, angle, and thickness attributes. Bland-Altman analysis suggested strong correlation between manually and automatically obtained lumen and calcification attributes. Agreement between manually and automatically obtained stent-deployment calcification scores was good (four of five lesions gave exact agreement). Results are encouraging and suggest our classification approach could be applied clinically for assessment and treatment planning of coronary calcification lesions.
Sapelovirus A (SV-A), formerly known as porcine sapelovirus as a member of a new genus Sapelovirus, is known to cause enteritis, pneumonia, polioencephalomyelitis and reproductive disorders in pigs. We have recently identified α2,3-linked sialic acid on GD1a ganglioside as a functional SV-A receptor rich in the cells of pigs and chickens. However, the role of GD1a in viral pathogenesis remains elusive. Here, we demonstrated that a Korean SV-A strain could induce diarrhoea and intestinal pathology in piglets but not in chicks. Moreover, this Korean SV-A strain had mild extra-intestinal tropisms appearing as mild, non-suppurative myelitis, encephalitis and pneumonia in piglets, but not in chicks. By real-time reverse transcription (RT) PCR, higher viral RNA levels were detected in faecal samples than in sera or extra-intestinal organs from virus-inoculated piglets. Immunohistochemistry confirmed that high viral antigens were detected in the epithelial cells of intestines from virus-inoculated piglets but not from chicks. This Korean SV-A strain could bind the cultured cell lines originated from various species, but replication occurred only in cells of porcine origin. These data indicated that this Korean SV-A strain could replicate and induce pathology in piglets but not in chicks, suggesting that additional porcine-specific factors are required for virus entry and replication. In addition, this Korean SV-A strain is enteropathogenic, but could spread to the bloodstream from the gut and disseminate to extra-intestinal organs and tissues. These results will contribute to our understanding of SV-A pathogenesis so that efficient anti-sapelovirus drugs and vaccines could be developed in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.