The objective of the current study was to examine oxidative stress induced by cigarette smoke extract (CSE) or cigarette smoke condensate (CSC) in human brain cells (T98G) and human brain microvascular endothelial cells (HBMEC) in mono- and co-culture systems. Cell viability of T98G cells exposed to CSC (0.05-4 mg/ml) was significantly decreased compared to CSE (0.025-20%). There were no marked differences between quantities of reactive oxygen species (ROS) generation by either CSE (2, 4, and 10%) or CSC (0.2, 0.4, and 0.8 mg/ml) treatment compared to control. However, a significant effect was noted in ROS generation following CSC incubation at 4mg/ml. Cellular integrity of HBMEC decreased to 74 and 64% within 120 h of exposure at the IC50 value of CSE and CSC, respectively. This study suggests that chronic exposure to cigarette smoking might initiate damage to the blood-brain barrier.
The purpose of the current study was to investigate the effect of two commercial cigarette smoke condensates (CCSC) on oxidative stress and cell cytotoxicity in human brain (T98G) or astrocytes (U-373 MG) in the presence of human brain microvascular endothelial cells (HBMEC). Cell viability of mono-culture of T98G or U-373 MG was markedly decreased in a concentration-dependent manner, and T98G was more susceptible than U-373 MG to CCSC exposure. Cytotoxicity was less prominent when T98G was co-cultured with HBMEC than when T98G was co-cultured with U-373 MG. Significant reduction in trans-epithelial electric resistance (TEER), a biomarker of cellular integrity was noted in HBMEC co-cultured with T98G (HBMEC-T98G co-culture) and U-373 MG co-cultured with T98G (U-373 MG-T98G co-culture) after 24 or 48 hr CCSC exposure, respectively. TEER value of U-373 MG co-cultured with T98G (79-84%) was higher than HBMEC co-cultured with T98G (62-63%) within 120-hr incubation with CCSC. Reactive oxygen species (ROS) generated by CCSC in mono-culture of T98G and U-373 MG reached highest levels at 4 and 16 mg/ml, respectively. ROS production by T98G fell when co-cultured with HBMEC or U-373MG. These findings suggest that adverse consequences of CCSC treatment on brain cells may be protected by blood-brain barrier or astrocytes, but with chronic exposure toxicity may be worsened due to destruction of cellular integrity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.