An experimental investigation has been conducted to characterize the influence of leading edge roughness and Reynolds number on compressor cascade profile loss. Tests have been conducted in a low-speed linear compressor cascade at Reynolds numbers between 210,000 and 640,000. Blade loading and loss have been measured with pressure taps and pneumatic probes. In addition, a two-component laser-doppler velocimeter (LDV) has been used to measure the boundary layer velocity profiles and turbulence levels at various chordwise locations near the blade suction surface. The “smooth” blade has a centerline-averaged roughness (Ra) of 0.62 μm. The “rough” blade is roughened by covering the leading edge of the “smooth” blade, including 2% of the pressure side and 2% of the suction side, with a 100 μm-thick tape with a roughness Ra of 4.97 μm. At Reynolds numbers ranging from 210,000 to 380,000, the leading edge roughness decreases loss slightly. At Reynolds number of 210,000, the leading edge roughness reduces the size of the suction side laminar separation bubble and turbulence level in the turbulent boundary layer after reattachment. Thus, the leading edge roughness reduces displacement and momentum thicknesses as well as profile loss at Reynolds number of 210,000. However, the same leading edge roughness increases loss significantly for Re = 450,000 ∼ 640,000. At Reynolds number of 640,000, the leading edge roughness decreases the magnitude of the favorable pressure gradient for axial chordwise locations less than 0.41 and induces turbulent separation for axial chordwise locations greater than 0.63, drastically increasing loss. Thus, roughness limited to the leading edge still has a profound effect on the compressor flow field.
Analytical and experimental investigations have been conducted to characterize the performance of "short" ejectors. In short ejectors, the core of primary (motive) flow still exists at the mixing duct exit, and nonuniform mixed flow is discharged from the mixing duct. Due to incomplete mixing, short ejector pumping performance is degraded and cannot be predicted by the existing "long" ejector models. The new analytical short ejector model presented in this paper is based on the control volume analysis and jet expansion model. The secondary (entrained) flow velocity and the corresponding shear layer (between the primary and the secondary flows) growth rate variations along the mixing duct are taken into account. In addition, measurements have been made in ejectors with length ratios (LRs) of two and three for an area ratio (AR) of 1.95; and a LR of two for an AR of 3.08. Velocity profiles at the mixing duct inlet and exit, and static pressure distribution along the mixing duct have been measured with pitot probes and pressure taps. All of the tests have been carried out at a Reynolds number of 420,000. Comparison shows that the new ejector model can accurately predict flow characteristics and performance of short ejectors. For all of the test cases, the velocity profiles at the mixing duct inlet and exit are well predicted. Also, both predictions and measurements show pumping enhancement with increasing mixing duct length. The pumping enhancement is due to the increase in the static pressure difference between the mixing duct inlet and atmosphere as the mixing duct is lengthened. Furthermore, both measured and predicted static pressure distributions along the mixing duct show a kink. According to the analysis, the kink occurs when the outer shear layer reaches the mixing duct wall, and the secondary flow velocity decreases along the mixing duct upstream of the kink and increases downstream of the kink. Thus, the new ejector model can accurately predict not only the integral performance but also different mixing regimes in short ejectors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.