Protein kinase C-θ (PKC-θ) is required for activation of the transcription factor NF-κB induced by signaling via the T cell antigen receptor (TCR); however, the direct activator of PKC-θ is unknown. We report that the kinase GLK (MAP4K3) directly activated PKC-θ during TCR signaling. TCR signaling activated GLK by inducing its direct interaction with the upstream adaptor SLP-76. GLK-deficient mice had impaired immune responses and were resistant to experimental autoimmune encephalomyelitis. Consistent with that, people with systemic lupus erythematosus had considerable enhanced GLK expression and activation of PKC-θ and the kinase IKK in T cells, and the frequency of GLK-overexpressing T cells was directly correlated with disease severity. Thus, GLK is a direct activator of PKC-θ, and activation of GLK-PKC-θ-IKK could be used as new diagnostic biomarkers and therapeutic targets for systemic lupus erythematosus.
JNK pathway-associated phosphatase (JKAP, also known as DUSP22 or JSP-1) is a JNK activator. The in vivo role of JKAP in immune regulation remains unclear. Here we report that JKAP directly inactivates Lck by dephosphorylating tyrosine-394 residue during T-cell receptor (TCR) signalling. JKAP-knockout T cells display enhanced cell proliferation and cytokine production. JKAP-knockout mice show enhanced T-cell-mediated immune responses and are more susceptible to experimental autoimmune encephalomyelitis (EAE). In addition, the recipient mice that are adoptively transferred with JKAP-knockout T cells show exacerbated EAE symptoms. Aged JKAP-knockout mice spontaneously develop inflammation and autoimmunity. Thus, our results indicate that JKAP is an important phosphatase that inactivates Lck in the TCR signalling turn-off stage, leading to suppression of T-cell-mediated immunity and autoimmunity.
Proinflammatory cytokines play important roles in insulin resistance. Here we report that mice with a T-cell-specific conditional knockout of HGK (T-HGK cKO) develop systemic inflammation and insulin resistance. This condition is ameliorated by either IL-6 or IL-17 neutralization. HGK directly phosphorylates TRAF2, leading to its lysosomal degradation and subsequent inhibition of IL-6 production. IL-6-overproducing HGK-deficient T cells accumulate in adipose tissue and further differentiate into IL-6/IL-17 double-positive cells. Moreover, CCL20 neutralization or CCR6 deficiency reduces the Th17 population or insulin resistance in T-HGK cKO mice. In addition, leptin receptor deficiency in T cells inhibits Th17 differentiation and improves the insulin sensitivity in T-HGK cKO mice, which suggests that leptin cooperates with IL-6 to promote Th17 differentiation. Thus, HGK deficiency induces TRAF2/IL-6 upregulation, leading to IL-6/leptin-induced Th17 differentiation in adipose tissue and subsequent insulin resistance. These findings provide insight into the reciprocal regulation between the immune system and the metabolism.
Protein kinase C (PKC)-θ is a serine/threonine kinase belonging to the calcium-independent novel PKC subfamily; its expression is restricted to certain tissues and cell types, including T cells. The signals delivered from T cell receptor (TCR) and CD28 costimulatory molecules trigger PKC-θ catalytic activation and membrane translocation to the immunological synapse, leading to activation of NF-κB, AP-1, and NF-AT. These transcription factors are important for T cell survival, activation, and differentiation. Phosphorylation of PKC-θ at multiple Ser/Thr/Tyr residues is induced in T cells during TCR signaling. Some phosphorylation sites play critical roles in the regulation of PKC-θ function and downstream signaling. The regulation mechanisms for PKC-θ phosphorylation sites are now being revealed. In this review, we discuss the current understanding of the regulation of PKC-θ function by phosphorylation during TCR signaling.
Background: HPK1 is a hematopoiesis-specific Ste20-like serine/threonine kinase that suppresses immune responses and autoimmunity. Results: HPK1 knock-out B cells show loss of Thr-152 phosphorylation, 14-3-3 binding, and Lys-37/38/42-ubiquitination of BLNK.
Conclusion: HPK1 attenuates BCR signaling via inducing phosphorylation and ubiquitination of BLNK.Significance: This is the first report of BLNK ubiquitination that is initiated by HPK1-induced phosphorylation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.