Securing the chemical and physical stabilities of electrode/solid‐electrolyte interfaces is crucial for the use of solid electrolytes in all‐solid‐state batteries. Directly probing these interfaces during electrochemical reactions would significantly enrich the mechanistic understanding and inspire potential solutions for their regulation. Herein, the electrochemistry of the lithium/Li7La3Zr2O12‐electrolyte interface is elucidated by probing lithium deposition through the electrolyte in an anode‐free solid‐state battery in real time. Lithium plating is strongly affected by the geometry of the garnet‐type Li7La3Zr2O12 (LLZO) surface, where nonuniform/filamentary growth is triggered particularly at morphological defects. More importantly, lithium‐growth behavior significantly changes when the LLZO surface is modified with an artificial interlayer to produce regulated lithium depositions. It is shown that lithium‐growth kinetics critically depend on the nature of the interlayer species, leading to distinct lithium‐deposition morphologies. Subsequently, the dynamic role of the interlayer in battery operation is discussed as a buffer and seed layer for lithium redistribution and precipitation, respectively, in tailoring lithium deposition. These findings broaden the understanding of the electrochemical lithium‐plating process at the solid‐electrolyte/lithium interface, highlight the importance of exploring various interlayers as a new avenue for regulating the lithium‐metal anode, and also offer insight into the nature of lithium growth in anode‐free solid‐state batteries.
Lithium metal batteries using solid electrolytes are considered to be the next-generation lithium batteries due to their enhanced energy density and safety. However, interfacial instabilities between Li-metal and solid electrolytes limit their implementation in practical batteries. Herein, Li-metal batteries using tailored garnet-type Li7-xLa3-aZr2-bO12 (LLZO) solid electrolytes is reported, which shows remarkable stability and energy density, meeting the lifespan requirements of commercial applications. We demonstrate that the compatibility between LLZO and lithium metal is crucial for long-term stability, which is accomplished by bulk dopant regulating and dopant-specific interfacial treatment using protonation/etching. An all-solid-state with 5 mAh cm−2 cathode delivers a cumulative capacity of over 4000 mAh cm−2 at 3 mA cm−2, which to the best of our knowledge, is the highest cycling parameter reported for Li-metal batteries with LLZOs. These findings are expected to promote the development of solid-state Li-metal batteries by highlighting the efficacy of the coupled bulk and interface doping of solid electrolytes.
The key challenges in all-solid-state batteries (ASSBs) are establishing and maintaining perfect physical contact between rigid components for facile interfacial charge transfer, particularly between the solid electrolyte and cathode, during repeated electrochemical cycling. Here, we introduce inorganic-based pliable solid electrolytes that exhibit extraordinary clay-like mechanical properties (storage and loss moduli <1 MPa) at room temperature, high lithium-ion conductivity (3.6 mS cm −1 ), and a glass transition below −50°C. The unique mechanical features enabled the solid electrolyte to penetrate into the high-loading cathode like liquid, thereby providing complete ionic conduction paths for all cathode particles as well as maintaining the pathway even during cell operation. We propose a design principle in which the complex anion formation including Ga, F, and a different halogen can induce the claylike features. Our findings provide new opportunities in the search for solid electrolytes and suggest a new approach for resolving the issues caused by the solid electrolyte−cathode interface in ASSBs.
Lithium metal batteries (LMBs) with inorganic solid-state electrolytes are considered promising secondary battery systems because of their higher energy content than their Li-ion counterpart. However, the LMB performance remains unsatisfactory for commercialization, primarily owing to the inability of the inorganic solid-state electrolytes to hinder lithium dendrite propagation. Here, using an Ag-coated Li6.4La3Zr1.7Ta0.3O12 (LLZTO) inorganic solid electrolyte in combination with a silver-carbon interlayer, we demonstrate the production of stable interfacially engineered lab-scale LMBs. Via experimental measurements and computational modelling, we prove that the interlayers strategy effectively regulates lithium stripping/plating and prevents dendrite penetration in the solid-state electrolyte pellet. By coupling the surface-engineered LLZTO with a lithium metal negative electrode, a high-voltage positive electrode with an ionic liquid-based liquid electrolyte solution in pouch cell configuration, we report 800 cycles at 1.6 mA/cm2 and 25 °C without applying external pressure. This cell enables an initial discharge capacity of about 3 mAh/cm2 and a discharge capacity retention of about 85%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.