The outbreak of COVID-19 has attracted people’s attention to our healthcare system, stimulating the advancement of next-generation health monitoring technologies. IoT attracts extensive attention in this advancement for its advantage in ubiquitous communication and sensing. RFID plays a key role in IoT to tackle the challenges in passive communication and identification and is now emerging as a sensing technology which has the ability to reduce the cost and complexity of data collection. It is advantageous to introduce RFID sensor technologies in health-related sensing and monitoring, as there are many sensors used in health monitoring systems with the potential to be integrated with RFID for smart sensing and monitoring. But due to the unique characteristics of the human body, there are challenges in developing effective RFID sensors for human health monitoring in terms of communication and sensing. For example, in a typical IoT health monitoring application, the main challenges are as follows: (1) energy issues, the efficiency of RF front-end energy harvesting and power conversion is measured; (2) communication issues, the basic technology of RFID sensors shows great heterogeneity in terms of antennas, integrated circuit functions, sensing elements, and data protocols; and (3) performance stability and sensitivity issues, the RFID sensors are mainly attached to the object to be measured to carry out identification and parameter sensing. However, in practical applications, these can also be affected by certain environmental factors. This paper presents the recent advancement in RFID sensor technologies and the challenges for the IoT healthcare system. The current sensors used in health monitoring are also reviewed with regard to integrating possibility with RFID and IoT. The future research direction is pointed out for the emergence of the next-generation healthcare and monitoring system.
Buried pipelines are an essential component of the urban infrastructure of modern cities. Traditional buried pipes are mainly made of metal materials. With the development of material science and technology in recent years, non-metallic pipes, such as plastic pipes, ceramic pipes, and concrete pipes, are increasingly taking the place of pipes made from metal in various pipeline networks such as water supply, drainage, heat, industry, oil, and gas. The location technologies for the location of the buried metal pipeline have become mature, but detection and location technologies for the non-metallic pipelines are still developing. In this paper, current trends and future perspectives of detection and location of buried non-metallic pipelines are summarized. Initially, this paper reviews and analyzes electromagnetic induction technologies, electromagnetic wave technologies, and other physics-based technologies. It then focuses on acoustic detection and location technologies, and finally introduces emerging technologies. Then the technical characteristics of each detection and location method have been compared, with their strengths and weaknesses identified. The current trends and future perspectives of each buried non-metallic pipeline detection and location technology have also been defined. Finally, some suggestions for the future development of buried non-metallic pipeline detection and location technologies are provided.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.