Recent developments in two-dimensional (2D) THz-Raman and 2D Raman spectroscopies have created the possibility for quantitatively investigating the role of many dynamic and structural aspects of the molecular system. We explain the significant points for properly simulating 2D vibrational spectroscopic studies of intermolecular modes using the full molecular dynamics approach, in particular, regarding the system size, the treatment of the thermostat, and inclusion of an Ewald summation for the induced polarizability. Moreover, using the simulation results for water employing various polarization functions, we elucidate the roles of permanent and induced optical properties in determining the 2D profiles of the signal.
Frequency-domain two-dimensional Raman signals, which are equivalent to coherent two-dimensional Raman scattering (COTRAS) signals, for liquid water and carbon tetrachloride were calculated using an equilibrium-nonequilibrium hybrid MD simulation algorithm. We elucidate mechanisms governing the 2D signal profiles involving anharmonic mode-mode coupling and the nonlinearities of the polarizability for the intermolecular and intramolecular vibrational modes. The predicted signal profiles and intensities can be utilized to analyze recently developed single-beam 2D spectra, whose signals are generated from a coherently controlled pulse, allowing the single-beam measurement to be carried out more efficiently.
Background/AimsWe investigated the role of representative endoplasmic reticulum proteins, stromal interaction molecule 1 (STIM1), and store-operated calcium entry-associated regulatory factor (SARAF) in pacemaker activity in cultured interstitial cells of Cajal (ICCs) isolated from mouse small intestine. MethodsThe whole-cell patch clamp technique applied for intracellular calcium ions ([Ca 2+ ] i ) analysis with STIM1 or SARAF overexpressed cultured ICCs from mouse small intestine. ResultsIn the current-clamping mode, cultured ICCs displayed spontaneous pacemaker potentials. External carbachol exposure produced tonic membrane depolarization in the current-clamp mode, which recovered within a few seconds into normal pacemaker potentials. In STIM1-overexpressing cultured ICCs pacemaker potential frequency was increased, and in SARAF-overexpressing ICCs pacemaker potential frequency was strongly inhibited. The application of gadolinium (a non-selective cation channel inhibitor) or a Ca 2+ -free solution to understand Orai channel involvement abolished the generation of pacemaker potentials. When recording intracellular Ca 2+ concentration with Fluo 3-AM, STIM1-overexpressing ICCs showed an increased number of spontaneous intracellular Ca 2+ oscillations. However, SARAF-overexpressing ICCs showed fewer spontaneous intracellular Ca 2+ oscillations. ConclusionEndoplasmic reticulum proteins modulated the frequency of pacemaker activity in ICCs, and levels of STIM1 and SARAF may determine slow wave patterns in the gastrointestinal tract.(J Neurogastroenterol Motil 2018;24:128-137)
Single-beam spectrally controlled (SBSC) two-dimensional (2D) Raman spectroscopy is a unique 2D vibrational measurement technique utilizing trains of short pulses that are generated from a single broadband pulse by pulse shaping. This approach overcomes the difficulty of 2D Raman spectroscopy in dealing with small-signal extraction and avoids complicated low-order cascading effects, thus providing a new possibility for measuring the intramolecular and intermolecular modes of molecular liquids using fifth-order 2D Raman spectroscopy. Recently, for quantitatively investigating the mode–mode coupling mechanism, Hurwitz et al. [Opt. Express 28, 3803 (2020)] have developed a new pulse design for this measurement to separate the contributions of the fifth- and third-order polarizations, which are often overlapped in the original single-beam measurements. Here, we describe a method for simulating these original measurements and the new 2D Raman measurements on the basis of a second-order response function approach. We carry out full molecular dynamics simulations for carbon tetrachloride and liquid water using an equilibrium–nonequilibrium hybrid algorithm, with the aim of explaining the key features of the SBSC 2D Raman spectroscopic method from a theoretical point of view. The predicted signal profiles and intensities provide valuable information that can be applied to 2D spectroscopy experiments, allowing them to be carried out more efficiently.
Most information systems are component-based and developed by outsourcing, and developed software is maintained integrative.However, studies on cost measurement indicators and cost estimation model have not been performed sufficiently, which are foundational to enhance the productivity and efficiency of maintenance. This study suggests indicators to measure maintenance cost for component-based software and examines maintenance cost estimation model of component software by the measurement indicators suggested.In order to generate the indicators to measure the component-based maintenance cost, the previously proposed indicators are summarized comparatively. To estimate the measurement indicators of component-based software, it makes a comparison of the previously proposed indicators and arranges them. We classify the measurement indicators by how to apply according to maintenance types of component software and then we propose the cost measurement indicators. Moreover, we propose the cost estimation model according to the maintenance types of component software using the suggested measurement indicators suggested. With the suggested estimation model, a case study is performed and its validity is verified.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.