Background: Transcranial direct current stimulation (tDCS) is a promising tool for improving post-stroke cognitive function. Home-based rehabilitation is increasingly required for patients with stroke, and additional benefits are expected if supplemented with remotely supervised tDCS (RS-tDCS). We evaluated the cognitive improvement effect and feasibility of RS-tDCS in patients with chronic stroke. Methods: Twenty-six patients with chronic stroke and cognitive impairment (Korean version of the Montreal Cognitive Assessment [K-MoCA] score <26) were randomized into real and sham RS-tDCS groups and underwent concurrent computerized cognitive training and RS-tDCS. Patients and caregivers underwent training to ensure correct tDCS self-application, were monitored, and treated 5 d/wk for 4 weeks. We investigated several cognition tests including K-MoCA, Korean version of the Dementia Rating Scale-2, Korean-Boston Naming Test, Trail Making Test, Go/No Go, and Controlled Oral Word Association Test at the end of the training sessions and one month later. Repeated-measures ANOVA was used for comparison between the groups and within each group. The adherence rate of the appropriate RS-tDCS session was also investigated. Results: In within-group comparison, unlike the sham group, the real group showed significant improvement in K-MoCA ( P real =0.004 versus P sham =0.132), particularly in patients with lower baseline K-MoCA (K-MoCA 10–17 ; P real =0.001 versus P sham =0.835, K-MoCA 18–25 ; P real =0.060 versus P sham =0.064) or with left hemispheric lesions (left; P real =0.010 versus P sham =0.454, right; P real =0.106 versus P sham =0.128). In between-group comparison, a significant difference was observed in K-MoCA in the lower baseline K-MoCA subgroup (K-MoCA 10–17 ; P time×group =0.048), but no significant difference was found in other cognitive tests. The adherence rate of successful application of the RS-tDCS was 98.4%, and no serious adverse effects were detected. Conclusions: RS-tDCS is a safe and feasible rehabilitation modality for post-stroke cognitive dysfunction. Specifically, RS-tDCS is effective in patients with moderate cognitive decline. Additionally, these data demonstrate the potential to enhance home-based cognitive training, although significant differences were not consistently found in between-group comparisons; therefore, further larger studies are needed. REGISTRATION: URL: https://cris.nih.go.kr ; Unique identifier: KCT0003427.
Objective. Schizencephaly is a rare congenital malformation that causes motor impairment. To determine the treatment strategy, each domain of the motor functions should be appropriately evaluated. We correlated a color map of diffusion tensor imaging (DTI) and transcranial magnetic stimulation (TMS) with the hand function test (HFT) to identify the type of hand function that each test (DTI and TMS) reflects. Further, we attempted to demonstrate the motor neuron organization in schizencephaly. Method. This retrospective study was conducted on 12 patients with schizencephaly. TMS was conducted in the first dorsal interosseous (FDI), biceps (BB), and deltoid muscles of the upper extremity, and contralateral MEP (cMEP) and ipsilateral MEP (iMEP) were recorded. The HFT included the grip strength, box and block (B&B), and 9-hole peg test. The schizencephalic cleft was confirmed using magnetic resonance imaging, and the corticospinal tract (CST) was identified using the color map of DTI. The symmetry indices for the peduncle and CST at pons level were calculated as the ratios of the cross-sectional area of the less-affected side and that of the more-affected side. Result. In the more-affected hemisphere TMS, no iMEP was obtained. In the less-affected hemisphere TMS, the iMEP response was detected in 9 patients and cMEP in all patients, which was similar to the pattern observed in unilateral lesion. Paretic hand grip strength was strongly correlated with the presence of iMEP ( p = 0.044 ). The symmetry index of the color map of DTI was significantly correlated with the B&B ( p = 0.008 , R 2 = 0.416 ), whereas the symmetry index of the peduncle was not correlated with all HFTs. Conclusion. In patients with schizencephaly, the iMEP response rate is correlated with the hand function related to strength, while the symmetricity of the CST by the color map of DTI is correlated with the hand function associated with dexterity. Additionally, we suggest the possible motor organization pattern of schizencephaly following interhemispheric competition.
Whole-body vibration training (WBVT) is emerging as an alternative exercise method that be easily performed by older adults. This clinical trial investigates the efficacy of WBVT in improving muscle strength and physical performance before resistance exercise, in comparison to conventional resistance exercise after stretching exercise in older adults. The WBVT group (n = 20) performed WBVT using a vibrating platform (SW-VC15™), followed by strengthening exercises. The control group (n = 20) performed stretching instead of WBVT. Both groups underwent a total of 12 sessions (50 min per session). The primary outcome was isokinetic dynamometer. The secondary outcomes were grip strength, short physical performance battery (SPPB), a 36-Item Short Form Survey (SF-36), and body composition analysis. In all results, only the time effect was significant, and the group effect or time x group effect was not. Both groups showed a significant increase in isokinetic dynamometer. Although there was no significant group effect, the increase in mean peak torque was greater in the WBVT group. The only WBVT group showed significant improvement in SPPB. In SF-36, only the control group showed significant improvements. WBVT can be safely performed by older adults and may be an alternative exercise method to boost the effect of strengthening exercise.
Context: Whole-body vibration (WBV) training improves muscle strength and balance. Few studies have focused on the effects of WBV frequencies below 30 Hz. We aimed to investigate the effect of low-frequency WBV training on muscle activity, fatigue recovery, and oxygen consumption (VO2). Design: Prospective single-group, repeated-measures study. Methods: In this controlled laboratory setting study, 20 healthy adults (age 23.26 [1.66] y) performed half squats at 0, 4, 6, 8, 12, 16, 20, 24, and 30-Hz WBV. Muscle activity was evaluated using the root mean square and peak electromyography amplitude of 6 muscles (iliocostalis, rectus abdominis, rectus femoris, biceps femoris, tibialis anterior, and gastrocnemius) obtained via surface electromyography. VO2 was measured during the squats using a gas analyzer, and fatigue recovery was evaluated using measurements of lactate after the squats and after a recovery period. Statistical significance was set at P < .05, and analysis of variance was conducted to determine differences in muscle activity, fatigue, recovery, and VO2, with post hoc analyses as appropriate. Results: Of the 6 muscles measured, the muscle activity of the gastrocnemius alone significantly increased from 0 Hz at 4, 8, 12, 16, 24, and 30 Hz based on the root mean square values and at 4, 8, 12, and 30 Hz based on the peak electromyography amplitude values. There were no significant differences in the other muscles. There were no significant differences in VO2 or in lactate levels. Conclusions: Low-frequency WBV during squat exercises significantly increased the activity of the gastrocnemius medialis only at specific frequencies in healthy young adults. Low-frequency WBV is safe and has the potential to increase muscle activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.