The highly conserved C-terminus of the M protein of group A streptococcus (GAS) is a promising vaccine candidate. An epitope within the conserved C-terminus of the M protein, peptide 145 (a 20-mer with the sequence: LRRDLDASREAKKQVEKALE), has been defined which is the target of opsonic antibodies in both humans and mice, and is recognized by the sera of most adults living in areas of high streptococcal exposure. However, due to potential cross-reactivity between T cells stimulated by this region of the M protein and host cardiac myosin, it is critical to define precisely the minimal protective epitopes within p145. Studies have shown that the immunodominant epitope expressed by p145 is conformational, occurring as an alpha-helical coiled-coil. To enable us to map the murine minimal B cell and T cell epitopes within p145, we have used a novel strategy that allowed us to present shorter sequences of p145 in a native-like conformation. The minimal B cell epitope was found to be contained within residues 7-20 of the p145 sequence, and we have shown that mice immunized with this region are able to generate antibodies that bind to and also opsonize the organism GAS. The T cell epitope is located at the N-terminal region of the p145 sequence, residues 3-14. We have managed, therefore, to define a vaccine candidate--a minimal opsonic B cell epitope within the p145 sequence--that does not incorporate a potentially deleterious T cell epitope.
SUMMARYThis study demonstrates the presence of epitope-specific opsonic human antibodies in a population living in an area endemic for group A streptococci (GAS) infection. Antibodies recognizing a conserved C-terminal region epitope (p145, sequence in single letter amino acids: LRRDLDASREAKKQVE-KALE) of the M protein of GAS were isolated from human patients by affinity chromatography and were shown to be of the immunoglobulin G1 (IgG1) and IgG3 subclasses. These antibodies could reduce the number of colonies of serotype 5 GAS in an in vitro opsonization assay by 71-92%, compared with an equal amount of IgG from control adult donors living in non-endemic areas and without antibodies to p145. Addition of the peptide, p145, completely inhibited this opsonization. Indirect immunofluorescence showed that p145-specific antibodies were capable of binding to the surface of M5 GAS whereas control IgG did not. Using chimeric peptides, which contain overlapping segments of p145, each 12 amino acids in length, inserted into a known helical peptide derived from the DNA binding protein of yeast, GCN4, we have been able to further define two minimal regions within p145, referred to as pJ2 and pJ7. These peptides, pJ2 and pJ7, were able to inhibit opsonization by p145 specific antibodies. Finally, we have observed an association between the age-related development of immunity to GAS and the acquisition of antibodies to the conserved epitope, p145, raising the possibility of using this epitope as a target in a prophylactic vaccine administered during early childhood.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.