A strategy for the installation of small alkyl fragments onto pharmaceutically relevant aliphatic structures has been established via metallaphotoredox catalysis. Herein, we report that tris(trimethylsilyl)silanol can be employed as an effective halogen abstraction reagent that, in combination with photoredox and nickel catalysis, allows a generic approach to Csp3─Csp3 cross-electrophile coupling. In this study, we demonstrate that a variety of aliphatic drug-like groups can be successfully coupled with a number of commercially available small alkyl electrophiles, including methyl tosylate and strained cyclic alkyl bromides. Moreover, the union of two secondary aliphatic carbon centers, a long-standing challenge for organic molecule construction, has been accomplished with a wide array of structural formats. Last, this technology can be selectively merged with Csp2─Csp3 aryl–alkyl couplings to build drug-like systems in a highly modular fashion.
A continuous-flow protocol for the bromination of benzylic compounds with N-bromosuccinimide (NBS) is presented. The radical reactions were activated with a readily available household compact fluorescent lamp (CFL) using a simple flow reactor design based on transparent fluorinated ethylene polymer (FEP) tubing. All of the reactions were carried out using acetonitrile as the solvent, thus avoiding hazardous chlorinated solvents such as CCl4. For each substrate, only 1.05 equiv of NBS was necessary to fully transform the benzylic starting material into the corresponding bromide. The general character of the procedure was demonstrated by brominating a diverse set of 19 substrates containing different functional groups. Good to excellent isolated yields were obtained in all cases. The novel flow protocol can be readily scaled to multigram quantities by operating the reactor for longer time periods (throughput 30 mmol h(-1)), which is not easily possible in batch photochemical reactors. The bromination protocol can also be performed with equal efficiency in a larger flow reactor utilizing a more powerful lamp. For the bromination of phenylacetone as a model, a productivity of 180 mmol h(-1) for the desired bromide was achieved.
A continuous-flow protocol for the light-induced fluorination of benzylic compounds is presented. The procedure uses Selectfluor as the fluorine source and xanthone as an inexpensive and commercially available photoorganocatalyst. The flow photoreactor is based on transparent fluorinated ethylene propylene tubing and a household compact fluorescent lamp. The combination of xanthone with black-light irradiation results in very efficient fluorination. Good to excellent isolated yields were obtained for a variety of substrates bearing different functional groups applying residence times below 30 min.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.