Soft robotics is becoming an emerging solution to many of the problems in robotics, such as weight, cost and human interaction. In order to overcome such problems, bio-inspired designs have introduced new actuators, links and architectures. However, the complexity of the required models for control has increased dramatically and geometrical model approaches, widely used to model rigid dynamics, are not enough to model these new hardware types. In this paper, different linear and non-linear models will be used to model a soft neck consisting of a central soft link actuated by three motor-driven tendons. By combining the force on the different tendons, the neck is able to perform a motion similar to that of a human neck. In order to simplify the modeling, first a system input–output redefinition is proposed, considering the neck pitch and roll angles as outputs and the tendon lengths as inputs. Later, two identification strategies are selected and adapted to our case: set membership, a data-driven, nonlinear and non-parametric identification strategy which needs no input redefinition; and Recursive least-squares (RLS), a widely recognized identification technique. The first method offers the possibility of modeling complex dynamics without specific knowledge of its mathematical representation. The selection of this method was done considering its possible extension to more complex dynamics and the fact that its impact in soft robotics is yet to be studied according to the current literature. On the other hand, RLS shows the implication of using a parametric and linear identification in a nonlinear plant, and also helps to evaluate the degree of nonlinearity of the system by comparing the different performances. In addition to these methods, a neural network identification is used for comparison purposes. The obtained results validate the modeling approaches proposed.
This paper presents a comparison study of three control design approaches for humanoid balancing based on the Center of Mass (CoM) stabilization and body posture adjustment. The comparison was carried out under controlled circumstances allowing other researchers to replicate and compare our results with their own. The feedback control from state space design is based on simple models and provides sufficient robustness to control complex and high Degrees of Freedom (DoFs) systems, such as humanoids. The implemented strategies allow compliant behavior of the robot in reaction to impulsive or periodical disturbances, resulting in a smooth and human-like response while considering constraints. In this respect, we implemented two balancing strategies to compensate for the CoM deviation. The first one uses the robot’s capture point as a stability principle and the second one uses the Force/Torque sensors at the ankles to define a CoM reference that stabilizes the robot. In addition, was implemented a third strategy based on upper body orientation to absorb external disturbances and counterbalance them. Even though the balancing strategies are implemented independently, they can be merged to further increase balancing performance. The proposed strategies were previously applied on different humanoid bipedal platforms, however, their performance could not be properly benchmarked before. With this concern, this paper focuses on benchmarking in controlled scenarios to help the community in comparing different balance techniques. The key performance indicators (KPIs) used in our comparison are the CoM deviation, the settling time, the maximum measured orientation, passive gait measure, measured ankles torques, and reconstructed Center of Pressure (CoP). The benchmarking experiments were carried out in simulations and using the facility at Istituto Italiano di Tecnologia on the REEM-C humanoid robot provided by PAL robotics inside the EU H2020 project EUROBENCH framework.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.