Carboxylate groups have diverse functionalities in ligands of transition metal catalysts. Here we present a conceptually different function of the carboxylates: the oxide relay. It functions by providing an intramolecular nucleophilic oxygen close to the oxo group to facilitate O−O bond formation and at a later stage a remote electrophilic center to facilitate OH − nucleophilic attack. Empirical valence bond-molecular dynamics (EVB-MD) models were generated for key bond forming steps, diffusion coefficients and binding free energies from potential of mean force estimations were calculated from molecular dynamics (MD) simulations, activation free energies of chemical steps were calculated using density functional theory (DFT). The catalyst studied is the extremely active Ru(tda)(py) 2 water oxidation catalyst. The combination of simulation methods allowed for estimation of the turnover frequencies, which were within 1 order of magnitude from the experimental results at different pH values. From the calculated reaction rates we find that at low pH the OH − anion nucleophilic attack is the ratelimiting step, which changes at high pH to the O−O bond formation step. Both steps are extremely rapid, and key to the efficiency is the oxide relay functionality of a pendant carboxylate group. We cannot exclude all alternative mechanisms and suggest isotope experiments using 18 O-labeled water to support or invalidate the oxide relay mechanism. The functionality was discovered for a ruthenium catalyst, but since there is nothing in the mechanism restricting it to this metal, the oxide relay functionality could open new ways to design the next-generation water oxidation catalysts with improved activity.
In order to combine the advantages of molecular catalysts with the stability of solid-state catalysts, hybrid systems with catalysts immobilized on carbon nanotubes are prominent candidates. Here we explore our recent mechanistic proposal for Ru(tda)(py)2, the oxide relay mechanism, in a hybrid system from an experimental study. It reacts with the same efficiency but with increased stability compared to the homogeneous molecular catalyst. We used the empirical valence bond method and molecular dynamics with enhanced sampling approaches to investigate the two key steps in the mechanism: the intramolecular O–O bond formation and the OH– nucleophilic attack. The results on these calculations show that the oxide relay mechanism remains unaltered in the new environment. We believe that the principles should apply to other oxide containing dangling groups and to other metal centers, opening new possibilities of future developments on hybrid molecular catalyst-based water splitting devices.
To avoid the scaling of the number of qubits with the size of the basis set, one can divide the molecular space into active and inactive regions, which is also known as complete active space methods. However, selecting the active space alone is not enough to accurately describe quantum mechanical effects such as correlation. This study emphasizes the importance of optimizing the active space orbitals to describe correlation and improve the basis-dependent Hartree−Fock energies. We will explore classical and quantum computation methods for orbital optimization and compare the chemically inspired ansatz, UCCSD, with the classical full CI approach for describing the active space in both weakly and strongly correlated molecules. Finally, we will investigate the practical implementation of a quantum CASSCF, where hardware-efficient circuits must be used and noise can interfere with accuracy and convergence. Additionally, we will examine the impact of using canonical and noncanonical active orbitals on the convergence of the quantum CASSCF routine in the presence of noise.
To increase the stability and current density of molecular-catalyst-based electroanodes for water oxidation, immobilization of the catalysts at the electrode surface is a common strategy. A prominent example is the oligomerized Ru(tda) molecular catalyst, which showed outstanding current densities even at neutral pH values. One of the most challenging aspects of immobilized catalysts is to understand the interaction between the catalyst and the surface under operando conditions. Experiments are often performed under model conditions, and computational methods to study reaction steps are typically limited to a few hundred atoms. In this study, we combined three computational methods, density functional theory electronic structure computations, molecular dynamics for large-scale simulations of the catalyst–solid interaction, and empirical valence bond for reaction modeling the catalyst at the interface of a large carbon support and a phosphate water buffer. These techniques allowed us to explore the combined effects of solvent, hydrophobic directionality, and electric field on the attachment and reactivity of a Ru(tda) pentamer at a graphene surface. Our simulations have a perfect agreement with the experimental characterization under model conditions. However, we find that under operando conditions, where the catalyst is oxidized to the active RuV state, with a phosphate-containing electrolyte and an applied electric field, the attachment is completely reversed compared to the model conditions with RuII and organic solvents. This reversed attachment leads to a water-excluded region close to the active RuVO center. The EVB reaction modeling showed that the reaction could still proceed to form an O–O bond via an oxide relay mechanism, where a dangling carboxylate reacts with the oxo via nucleophilic attack. We find that the activation energies are identical in water solution and at the electrode surface, showing how this mechanism is key to highly active molecular water oxidation catalysts immobilized on surfaces. Since attachment to surfaces could have a strong, and often negative, influence on the reactions, this study provides a guideline on how to model reactions without compromising the complexity of the electrode environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.