The strength of biotic interactions is generally thought to increase toward the equator, but support for this hypothesis is contradictory. We explored whether predator attacks on artificial prey of eight different colors vary among climates and whether this variation affects the detection of latitudinal patterns in predation. Bird attack rates negatively correlated with model luminance in cold and temperate environments, but not in tropical environments. Bird predation on black and on white (extremes in luminance) models demonstrated different latitudinal patterns, presumably due to differences in prey conspicuousness between habitats with different light regimes. When attacks on models of all colors were combined, arthropod predation decreased, whereas bird predation increased with increasing latitude. We conclude that selection for prey coloration may vary geographically and according to predator identity, and that the importance of different predators may show contrasting patterns, thus weakening the overall latitudinal trend in top‐down control of herbivorous insects.
The armed conflict between Ukraine and Russia that began in late February 2022 has far-reaching environmental consequences, especially regarding water resources and management. Here we analysed the multifaceted impacts of the military actions on freshwater resources and water infrastructure during the first three months of the conflict. We identified the nature of the impacts, the kind of pressures imposed on the water sector and the negative consequences for the availability and quality of freshwater resources for the civilian population. Our results showed that many water infrastructures such as dams at reservoirs, water supply and treatment systems and subsurface mines have been impacted or are at risk from military actions. Continuation of the conflict will have multiple negative sustainability implications not only in Ukraine but also on a global scale, hampering achievement of clean water and sanitation, conservation and sustainable use of water resources, and energy and food security.
This is an open access article under the terms of the Creat ive Commo ns Attri bution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.