Injuries to the cauda equina of the spinal cord result in autonomic and motor neuron dysfunction. We developed a rodent lumbosacral ventral root avulsion injury model of cauda equina injury to investigate the lesion effect in the spinal cord. We studied the retrograde effects of a unilateral L5-S2 ventral root avulsion on efferent preganglionic parasympathetic neurons (PPNs) and pelvic motoneurons in the L6 and S1 segments at 1, 2, 4, and 6 weeks postoperatively in the adult male rat. We used Fluoro-Gold-prelabeling techniques, immunohistochemistry, and quantitative stereologic analysis to show an injury-induced progressive and parallel death of PPNs and motoneurons. At 6 weeks after injury, only 22% of PPNs and 16% of motoneurons remained. Furthermore, of the neurons that survived at 6 weeks, the soma volume was reduced by 25% in PPNs and 50% in motoneurons. Choline acetyltransferase (ChAT) protein was expressed in only 30% of PPNs, but 80% of motoneurons remaining at 1 week postoperatively, suggesting early differential effects between these two neuronal types. However, all remaining PPNs and motoneurons were ChAT positive at 4 weeks postoperatively. Nuclear condensation and cleaved caspase-3 were detected in axotomized PPNs and motoneurons, suggesting apoptosis as a contributing mechanism of the neural death. We conclude that lumbosacral ventral root avulsions progressively deplete autonomic and motor neurons. The findings suggest that early neuroprotection will be an important consideration in future attempts of treating acute cauda equina injuries.
Here, we have translated from the rat to the non-human primate a unilateral lumbosacral injury as a model for cauda equina injury. In this morphological study, we have investigated retrograde effects of a unilateral L6-S2 ventral root avulsion (VRA) injury as well as the long-term effects of Wallerian degeneration on avulsed ventral roots at 6–10 months post-operatively in four adult male rhesus monkeys.
Immunohistochemistry for choline acetyl transferase and glial fibrillary acidic protein demonstrated a significant loss of the majority of the axotomized motoneurons in the affected L6-S2 segments and signs of an associated astrocytic glial response within the ventral horn of the L6 and S1 spinal cord segments. Quantitative analysis of the avulsed ventral roots showed that they exhibited normal size and were populated by a normal number of myelinated axons. However, the myelinated axons in the avulsed ventral roots were markedly smaller in caliber compared to the fibers of the intact contralateral ventral roots, which served as controls. Ultrastructural studies confirmed the presence of small myelinated axons and a population of unmyelinated axons within the avulsed roots. In addition, collagen fibers were readily identified within the endoneurium of the avulsed roots.
In summary, a lumbosacral VRA injury resulted in retrograde motoneuron loss and astrocytic glial activation in the ventral horn. Surprisingly, the Wallerian degeneration of motor axons in the avulsed ventral roots was followed by a repopulation of the avulsed roots by small myelinated and unmyelinated fibers. We speculate that the small axons may represent sprouting or axonal regeneration by primary afferents or autonomic fibers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.