We give a covariant and deductive algorithm to determine, for every Petrov type, the geometric elements associated with the Weyl tensor: principal and other characteristic 2-forms, Debever null directions and canonical frames. We show the usefulness of these results by applying them in giving the explicit characterization of two families of metrics: static type I spacetimes and type III metrics with a hypersurface-orthogonal Killing vector.
Every evolution of a fluid is uniquely described by an energy tensor. But the converse is not true: an energy tensor may describe the evolution of different fluids. The problem of determining them is called here the inverse problem. This problem may admit unphysical or non-deterministic solutions. This paper is devoted to solve the inverse problem for perfect energy tensors in the class of perfect fluids evolving in local thermal equilibrium (l.t.e.). The starting point is a previous result (Coll and Ferrando in J Math Phys 30: 2918-2922, 1989 showing that thermodynamic fluids evolving in l.t.e. admit a purely hydrodynamic characterization. This characterization allows solving this inverse problem in a very compact form. The paradigmatic case of perfect energy tensors representing the evolution of ideal gases is studied in detail and some applications and examples are outlined.
An intrinsic algorithm that exclusively involves conditions on the metric tensor and its differential concomitants is presented to identify every typeD static vacuum solution. In particular, the necessary and sufficient explicit and intrinsic conditions are given for a Lorentzian metric to be the Schwarzschild solution.
Abstract.A covariant algorithm is given to obtain principal 2-forms, Debever null directions and canonical frames associated with Petrov type I Weyl tensors. The relationship between these Weyl elements is explained, and their explicit expressions depending on Weyl invariants are obtained. These results are used to determine a cosmological observer in type I universes, and their usefulness in spacetime intrinsic characterization is shown.
We give a classification of the type D space–times based on the invariant differential properties of the Weyl principal structure. Our classification is established using tensorial invariants of the Weyl tensor and, consequently, besides its intrinsic nature, it is valid for the whole set of the type D metrics and it applies on both, vacuum and nonvacuum solutions. We consider the Cotton-zero type D metrics and we study the classes that are compatible with this condition. The subfamily of space–times with constant argument of the Weyl eigenvalue is analyzed in more detail by offering a canonical expression for the metric tensor and by giving a generalization of some results about the nonexistence of purely magnetic solutions. The usefulness of these results is illustrated in characterizing and classifying a family of Einstein–Maxwell solutions. Our approach permits us to give intrinsic and explicit conditions that label every metric, obtaining in this way an operational algorithm to detect them. In particular a characterization of the Reissner–Nordström metric is accomplished.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.