In this paper, a robust leader-following consensus protocol for multi-agent systems (MASs) subject to faults in the information exchange and disturbance is presented. The problem under consideration is to guarantee the convergence of the agent trajectories to a leader agent when all the agent followers are under faults in the information exchange as smooth time-varying delays and disturbances. The main contribution in this paper is the design of a robust leader-following control through the Lyapunov approach and an optimal H ∞ criterion such that all agents follow a virtual leader agent despite faults in the information exchange and disturbances. Linear matrix inequalities (LMIs)-based conditions are obtained whose solution allows computing the robust controller gain. In order to show the effectiveness of the proposed approach, numerical examples are carried out comparing a state-of-the-art approach and the proposed strategy in a fleet of unmanned aerial vehicles (UAVs) subject to wind turbulence which are shown to achieve the formation control.INDEX TERMS Consensus, communication faults, leader-following consensus, multi-agent systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.