AMP-activated protein kinase (AMPK) functions as an energy sensor and is pivotal in maintaining cellular metabolic homeostasis. Numerous studies have shown that down-regulation of AMPK kinase activity or protein stability not only lead to abnormality of metabolism but also contribute to tumor development. However, whether transcription regulation of AMPK plays a critical role in cancer metastasis remains unknown. In this study, we demonstrate that AMPKα1 expression is down-regulated in advanced human breast cancer and is associated with poor clinical outcomes. Transcription of AMPKα1 is inhibited on activation of PI3K and HER2 through ΔNp63α. Ablation of AMPKα1 expression or inhibition of AMPK kinase activity leads to disruption of E-cadherin-mediated cell–cell adhesion in vitro and increased tumor metastasis in vivo. Furthermore, restoration of AMPKα1 expression significantly rescues PI3K/HER2-induced disruption of cell–cell adhesion, cell invasion, and cancer metastasis. Together, these results demonstrate that the transcription control is another layer of AMPK regulation and suggest a critical role for AMPK in regulating cell–cell adhesion and cancer metastasis.
The blood glucose modifier metformin is used to treat type II diabetes and has also been shown to possess anticancer activities. Recent studies indicate that glucose deprivation can greatly enhance metformin-mediated inhibition of cell viability, but the molecular mechanism involved in this inhibition is unclear. In this study, we report that, under glucose deprivation, metformin inhibited expression of ΔNp63α, a p53 family member involved in cell adhesion pathways, resulting in disruption of cell matrix adhesion and subsequent apoptosis in human squamous carcinoma cells. We further show that metformin promoted ΔNp63α protein instability independent of AMP-activated protein kinase and that WWP1, an E3 ligase of ΔNp63α, was involved in metformin-mediated down-regulation of ΔNp63α levels. In addition, we demonstrate that a combination of metformin and the glycolysis inhibitor 2-deoxy-d-glucose significantly inhibited ΔNp63α expression and also suppressed xenographic tumor growth In summary, this study reveals a new mechanism for metformin-mediated anticancer activity and suggests a new strategy for treating human squamous cell carcinoma.
Vincristine is extensively used chemotherapeutic medicine to treat leukemia. However, it remains a critical clinical problem with regard to its toxicity and drug-resistance. AMP-activated protein kinase (AMPK) is an energy sensor that is pivotal in maintaining cell metabolic homeostasis. It is reported that AMPK is involved in vincristine-induced apoptosis. However, whether AMPK is involved in chemotherapy-resistance is largely unclear. It is well-documented that metformin, a widely used medicine to treat type II diabetes, possesses anti-cancer activities, yet whether metformin affects leukemia cell viability via vincristine is unknown. In this study, we showed that both AMPKα1 mRNA and phosphorylated AMPK protein levels were significantly decreased in clinical leukemia samples. We further demonstrated that metformin sensitized leukemia cells to vincristine-induced apoptosis in an AMPK-dependent manner. In addition, knockdown of AMPKα1 significantly reduced the effects of metformin on vincristine-induced apoptosis. Taken together, these results indicate that AMPK activation is critical in metformin effects on vincristine-induced apoptosis and suggest a putative strategy of a combination therapy using metformin and vincristine in treatment of leukemia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.