Lagoviruses belong to the Caliciviridae family. They were first recognized as highly pathogenic viruses of the European rabbit (Oryctolagus cuniculus) and European brown hare (Lepus europaeus) that emerged in the 1970-1980s, namely, rabbit haemorrhagic disease virus (RHDV) and European brown hare syndrome virus (EBHSV), according to the host species from which they had been first detected. However, the diversity of lagoviruses has recently expanded to include new related viruses with varying pathogenicity, geographic distribution and host ranges. Together with the frequent recombination observed amongst circulating viruses, there is a clear need to establish precise guidelines for classifying and naming lagovirus strains. Therefore, here we propose a new nomenclature based on phylogenetic relationships. In this new nomenclature, a single species of lagovirus would be recognized and called Lagovirus europaeus. The species would be divided into two genogroups that correspond to RHDV- and EBHSV-related viruses, respectively. Genogroups could be subdivided into genotypes, which could themselves be subdivided into phylogenetically well-supported variants. Based on available sequences, pairwise distance cutoffs have been defined, but with the accumulation of new sequences these cutoffs may need to be revised. We propose that an international working group could coordinate the nomenclature of lagoviruses and any proposals for revision.
Vaccination continues to be the main approach to protect animals from infectious diseases. Until recently, all licensed vaccines were developed using conventional technologies. Subunit vaccines are, however, gaining attention from researchers in the field of veterinary vaccinology, and among these, virus-like particles (VLPs) represent one of the most appealing approaches. VLPs are robust protein cages in the nanometer range that mimic the overall structure of the native virions but lack the viral genome. They are often antigenically indistinguishable from the virus from which they were derived and present important advantages in terms of safety. VLPs can stimulate strong humoral and cellular immune responses and have been shown to exhibit self-adjuvanting abilities. In addition to their suitability as a vaccine for the homologous virus from which they are derived, VLPs can also be used as vectors for the multimeric presentation of foreign antigens. VLPs have therefore shown dramatic effectiveness as candidate vaccines. Here, we review the current status of VLPs as a vaccine technology in the veterinary field, and discuss the potential advantages and challenges of this technology.
The successful use of a dendrimeric peptide to protect pigs against challenge with foot-and-mouth disease virus (FMDV), which causes the most devastating animal disease worldwide, is described. Animals were immunized intramuscularly with a peptide containing one copy of a FMDV T-cell epitope and branching out into four copies of a B-cell epitope. The four immunized pigs did not develop significant clinical signs upon FMDV challenge, neither systemic nor mucosal FMDV replication, nor was its transmission to contact control pigs observed. The dendrimeric construction specifically induced high titers of FMDV-neutralizing antibodies and activated FMDV-specific T cells. Interestingly, a potent anti-FMDV immunoglobulin A response (local and systemic) was observed, despite the parenteral administration of the peptide. On the other hand, peptideimmunized animals showed no antibodies specific of FMDV infection, which qualifies the peptide as a potential marker vaccine. Overall, the dendrimeric peptide used elicited an immune response comparable to that found for control FMDV-infected pigs that correlated with a solid protection against FMDV challenge. Dendrimeric designs of this type may hold substantial promise for peptide subunit vaccine development.
The protein regions involved in the nuclear translocation of the influenza virus PA polymerase subunit have been identified by deletion analysis of the protein expressed from a recombinant simian virus 40. Two regions seem to play a role in the process: region 1 (amino acids 124 to 139) and region II (amino acids 186 to 247), A nucleoplasmin-like nuclear translocation signal (NLS) has been identified in region I and an additional NLS appears to be present in region II, although no consensus targeting sequence can be detected. Alteration in any of the regions identified by short deletions completely prevented nuclear transport, whereas elimination of the regions I or I! by large amino-or carboxy-terminal deletions did not prevent nuclear targeting of the truncated protein. In addition, a point mutation at position 154 completely eliminated nuclear transport. A fl-galactosidase fusion protein containing the 280 amino acid terminal region of the PA protein was partially transported to the nucleus and mutant PA proteins with a cytoplasmic phenotype could not be rescued by superinfection with influenza virus. These results suggest that the PA protein contains a functional nuclear targeting region which is required in influenza virus infection, with two independent NLSs, one in region I and the other in region II.
We have developed a new strategy for immunization of wild rabbit populations against myxomatosis and rabbit hemorrhagic disease (RHD) that uses recombinant viruses based on a naturally attenuated field strain of myxoma virus (MV). The recombinant viruses expressed the RHDV major capsid protein (VP60) including a linear epitope tag from the transmissible gastroenteritis virus (TGEV) nucleoprotein. Following inoculation, the recombinant viruses induced specific antibody responses against MV, RHDV, and the TGEV tag. Immunization of wild rabbits by the subcutaneous and oral routes conferred protection against virulent RHDV and MV challenges. The recombinant viruses showed a limited horizontal transmission capacity, either by direct contact or in a flea-mediated process, promoting immunization of contact uninoculated animals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.