This study demonstrates anti-inflammatory, osteoprotective, and prohomeostatic effects of HU-308 in oral tissues of rats with LPS-induced periodontitis.
It is known that marijuana use decreases saliva secretion. Therefore, we hypothesized that cannabinoid receptors (CBs) are located in salivary glands to mediate that effect. In these experiments, we used the submandibular gland (SMG) of male rats, which is one of the major salivary glands. Mammalian tissues contain at least two types of CBs, CB1 and CB2, mainly located in the nervous system and peripheral tissues, respectively. Both receptors are coupled to Gi protein and respond by inhibiting the activity of adenylyl cyclase. We demonstrated that both CB1 and CB2 are present in the SMG, each showing specific localizations. The best-known endocannabinoid is anandamide (AEA), which binds with high affinity to CB1 and CB2. We showed that AEA markedly reduced forskolin-induced increase of cAMP content in vitro. This effect was blocked by AM251 and AM630 (CB1 and CB2 antagonists, respectively), indicating that both receptors are implicated in SMG physiology. In addition, we showed that AEA injected intraglandularly to anesthetized rats inhibited norepinephrine (NE)- and methacholine (MC)-stimulated saliva secretion in vivo and that both AM251 or AM630 prevented the inhibitory action of AEA. Also, the intraglandular injection of AM251 increased saliva secretion induced by lower doses of NE or MC. This increase was synergized after coinjection with AM630. Therefore, we concluded that AEA decreases saliva secretion in the SMG acting through CB1 and CB2 receptors.
Objective: Periodontitis is an infectious disease leading to inflammation and destruction of tissue surrounding and supporting the tooth. The progress of the inflammatory response depends on the host’s immune system and risk factors such as stress. The aim of the present study was to investigate the role of the endocannabinoid anandamide (AEA) in experimental periodontitis with restraint stress, since the endocannabinoid system is known to modulate the hypothalamo-pituitary-adrenal axis as well as immune functions and has been found in human gingival tissues. Methods: Experimental periodontitis was induced by ligature around first inferior molars and immobilization stress for 2 h twice daily for 7 days in a rat model. Results: Corticosterone plasma levels, locomotor activity, adrenal gland weight and bone loss were increased in periodontitis and stress groups, and there was also less weight gain. The inflammatory parameters such as prostaglandin E2 (radioimmunoassay), nitric oxide (radioconversion of 14C-arginine), tumor necrosis factor (TNF)-α (ELISA) and interleukin (IL)-1β (Western blot) measured in the gingival tissue were significantly increased in the periodontitis groups compared to the control group. Local injection of AEA (10–8M, 30 µl) decreased corticosterone plasma levels and the content of the cytokines TNF-α and IL-1β in gingival tissue in periodontitis-stress groups. These AEA-induced inhibitions were mediated by CB1 and CB2 cannabinoid receptors since the injection of both antagonists together, AM251 (10–6M) and AM630 (10–6M) in 30 µl, prevented these effects. Conclusion: The endocannabinoid AEA diminishes the inflammatory response in periodontitis even during a stressful situation.
Since nitric oxide has been found to control the function of many organs of the body by the non-adrenergic, non-cholinergic branch of the autonomic nervous system, we hypothesized that it might play a role in salivary secretion. Therefore, we investigated the distribution of nitric oxide synthase (NOS) throughout the submaxillary gland and also studied the ability of inhibitors of NOS to interfere with salivation induced by a cholinergic agonist, metacholine, and by a polypeptide, substance P. The secretory responses were determined in rats anesthetized with chlorolose following intravenous injection of the various pharmacological agents. There was no basal flow of saliva and dose-response curves were obtained by sequential intravenous injection of increasing doses of the drugs. Then, in the same animal, the same dose-response curves were performed in the presence of NOS inhibitors. L-Nitro-arginine-methyl-ester (L-NAME; 20 mg/kg) produced an over 50% inhibition of the dose-related salivation induced by metacholine. Similar results were produced with L-NG-monomethyl-L-arginine (L-NMMA; 5 mg/kg). The salivation induced by much lower molar doses of substance P was dramatically greater than that obtained with metacholine. The response to substance P was almost completely inhibited by L-NMMA at the lowest dose (0.3 mg/kg), but at higher doses (1 mg/kg), the inhibition was only around 60% and at the highest dose (3 mg/kg) only about 20%. In control rats, there were roughly equal amounts of calcium-dependent and calcium-independent NOS in the gland at this time. At the end of the experiment, the effect of the inhibitor of NOS, L-NMMA, on the NOS activity in the submandibular gland was determined. At this time, the Ca2+-dependent NOS was decreased and the Ca2+-independent NO was increased. The prior injection of L-NMMA reduced calcium-dependent NOS activity by approximately 70% but calcium-independent activity by only 30%. These results indicate that, at least at the end of the experiment, the blockade of NOS imposed by NMMA was incomplete. This could account in part for the failure of the inhibitors to block completely the stimulatory effect of the two secretagogues. Analysis of the distribution of NOS in the salivary gland revealed that it was not present in the acinar cells, but in neural terminals within the gland and also in the ductile system which contained neural (n) NOS in the apical membrane of the excretory and striated ducts, the cytoplasm of granular convoluted tubules and, to a lesser extent, in the cytoplasm of excretory and striated ducts. Macrophage (inducible) NOS was also found not only in the macrophages, but also in the tubules and ducts. Since drugs were used that would act on the receptors in the gland, the role of NO in our conditions is probably mediated by nNOS and iNOS in the ductile and tubular structures. Since iNOS would already be active, it is unlikely to play a role in this acute secretory activity. Rather the nNOS in these non-neural cells is probably ac...
These results demonstrate the beneficial effects of treatment with Meth-AEA on gingival tissue of rats with periodontitis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.