Probiotics are defined as living organisms that, when administered in sufficient numbers, are of benefit to the host. Current evidence indicates that varying probiotic strains mediate their effects by a variety of different effects that are dependent on the dosage employed as well as the route and frequency of delivery. Some probiotics act in the lumen of the gut by elaborating antibacterial molecules such as bacteriocins; others enhance the mucosal barrier by increasing the production of innate immune molecules, including goblet cell-derived mucins and trefoil factors and defensins produced by intestinal Paneth cells; and other probiotics mediate their beneficial effects by promoting adaptive immune responses (secretory immune globulin A, regulatory T cells, interleukin-10). Some probiotics have the capacity to activate receptors in the enteric nervous system, which could be used to promote pain relief in the setting of visceral hyperalgesia. Future development of the effective use of probiotics in treating various gastroenterological disorders in human participants should take advantage of this new knowledge. The creation of novel formulations of probiotics could be directed to effectively target certain mechanisms of actions that are altered in specific disease states.
BackgroundAlthough bacteria are implicated in the pathogenesis of chronic inflammatory bowel diseases (IBD), mechanisms of intestinal injury and immune activation remain unclear. Identification of adherent-invasive Escherichia coli (AIEC) strains in IBD patients offers an opportunity to characterize the pathogenesis of microbial-induced intestinal inflammation in IBD. Previous studies have focused on the invasive phenotype of AIEC and the ability to replicate and survive in phagocytes. However, the precise mechanisms by which these newly identified microbes penetrate the epithelial lining remain to be clarified. Therefore, the aim of this study was to delineate the effects of AIEC, strain LF82 (serotype O83:H1) on model polarized epithelial monolayers as a contributor to intestinal injury in IBD.ResultsInfection of T84 and Madin-Darby Canine Kidney-I polarized epithelial cell monolayers with AIEC, strain LF82 led to a reduction in transepithelial electrical resistance and increased macromolecular (10 kilodalton dextran) flux. Basolateral AIEC infection resulted in more severe disruption of the epithelial barrier. Increased permeability was accompanied by a redistribution of the tight junction adaptor protein, zonula occludens-1, demonstrated by confocal microscopy and formation of gaps between cells, as shown by transmission electron microscopy. After 4 h of infection of intestine 407 cells, bacteria replicated in the cell cytoplasm and were enclosed in membrane-bound vesicles positive for the late endosomal marker, LAMP1.ConclusionThese findings indicate that AIEC, strain LF82 disrupts the integrity of the polarized epithelial cell barrier. This disruption enables bacteria to penetrate into the epithelium and replicate in the host cell cytoplasm. These findings provide important links between microbes related to IBD, the intestinal epithelial cell barrier and disease pathogenesis.
Introduction: Compared to bovine formula (BF), breast milk (BM) has unique properties. In the newborn intestine, there is a homeostatic balance between the counterparts of the immune system, which allows a physiological inflammation, modulated by the gut microbiota. Many studies have attempted to understand the effect of BF vs. BM, and the changes in the gut microbiota, but few also focus on intestinal inflammation.Methods: We conducted a cohort study of newborn infants during their first 3 months. In stool samples taken at 1 and 3 months (timepoints T1 and T3), we quantified calprotectin, IL-8 and α1-antitrypsin by ELISA and we evaluated the expression of IL8 and IL1β genes by RT-qPCR. To determine the microbiota composition, the 16S rRNA gene was amplified and sequenced using 454 pyrosequencing. Sequences were clustered into operational taxonomic units (OTUs).Results: In total 15 BM and 10 BF infants were enrolled. In the BM group, we found calprotectin and α1-antitrypsin levels were significantly elevated at T3 compared to T1; no differences were found between T1 and T3 in the BF group. A comparison between the BM and BF groups showed that calprotectin levels at T1 were lower in the BM than the BF group; this difference was not observed at T3. For IL-8 levels, we found no differences between groups. A gene expression analysis of the IL8 and IL1β genes showed that infants from the BF group at T1 have a significantly increased expression of these markers compared to the BM group. Gut microbiota analyses revealed that the phylum Bacteroidetes was higher in BM than BF, whereas Firmicutes were higher in BF. A redundancy analysis and ANOVA showed BM has a community structure statistically different to BF at T1 but not at T3. Compared to BF, BM at T1 showed a higher representation of Enterococcus, Streptococcus, Enterobacter, Lactococcus, and Propionibacterium.Conclusions: We found a basal state of inflammation in the infants' intestine based on inflammation markers. One month after birth, infants receiving BF exhibited higher levels of inflammation compared to BM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.