The mean body size of limnetic cladocerans decreases from cold temperate to tropical regions, in both the northern and the southern hemisphere. This size shift has been attributed to both direct (e.g. physiological) or indirect (especially increased predation) impacts. To provide further information on the role of predation, we compiled results from several studies of subtropical Uruguayan lakes using three different approaches: (i) field observations from two lakes with contrasting fish abundance, Lakes Rivera and Rodó, (ii) fish exclusion experiments conducted in in-lake mesocosms in three lakes, and (iii) analyses of the Daphnia egg bank in the surface sediment of eighteen lakes. When fish predation pressure was low due to fish kills in Lake Rivera, large-bodied Daphnia appeared. In contrast, small-sized cladocerans were abundant in Lake Rodó, which exhibited a typical high abundance of fish. Likewise, relatively large cladocerans (e.g. mesocosms after only 2 weeks, most likely hatched from resting egg banks stored in the surface sediment, but their abundance declined again after fish stocking. Moreover, field studies showed that 9 out of 18 Uruguayan shallow lakes had resting eggs of Daphnia in their surface sediment despite that this genus was only recorded in three of the lakes in summer water samples, indicating that Daphnia might be able to build up populations at low risk of predation. Our results show that medium and large-sized zooplankton can occur in subtropical lakes when fish predation is removed. The evidence provided here collectively confirms the hypothesis that predation, rather than high-temperature induced physiological constraints, is the key factor determining the dominance of smallsized zooplankton in warm lakes.
The central provinces of Argentina are characterized by the presence of a high number of shallow lakes, located in endorheic basins, many of which have elevated salinities as well as eutrophic or hypereutrophic condition. The zooplankton of four saline shallow lakes of the province of La Pampa was studied on a monthly basis during a 2-year period to determine its temporal and spatial variation.The surface of these shallow lakes (< 2.5 m depth) varied between 56.8 and 215.9 ha, and some have from 8.4 to 20.8 g · l -1 . The more saline lakes have "clear" water and the less saline lakes "turbid" water. Fishes, Jenynsia multidentata, were present in only two lakes during the last two months of the studied period.The zooplankton was composed of 17 taxa of Rotifera, 5 taxa of Cladocera and 4 taxa of Copepoda. The low diversity and the faunistic composition are characteristic of saline environments. Although the studied lakes share 38% of the species, the faunistic similarity was higher between the two least saline lakes. The lowest diversity was found in the two most saline lakes.All four shallow lakes were characterized by their very high zooplankton density, especially in the least saline lakes (< 80000 ind · l -1 ). The abundance is significantly correlated with the water transparency but not with salinity.The zooplankton temporal variation was characterized by the alternation of macro-and microzooplankton, probably regulated by competition and intrazooplanktonic predation. In each lake, the spatial abundance distribution of the macro-and microzooplankton was homogeneous. It was related to the shallow depht of the lakes and their polymictic condition.The SCHEFFER model on alternative states in shallow lakes acknowledges that it cannot be applied to saline lakes because Daphnia, the main responsible for the clear water state, is not tolerant to high salinity. Our study shows that the most saline lakes, where the halophylic Daphnia menucoensis is abundant, have also the most clear waters. Another difference that we found with regards to the mentioned model is that, in turbid lakes, it could not have had a top-down control on macrozooplankton exerted by fishes because in these lakes fishes were practically absent.
1. Shallow lakes and ponds contribute disproportionally to species richness relative to other aquatic ecosystems. In-lake conditions (e.g. presence of submerged plants) seem to play a key role in determining diversity, as has been demonstrated for temperate lakes. When water quality deteriorates and turbidity increases, conditions in such lakes are affected drastically resulting in a loss of diversity. However, it is not clear whether subtropical lakes show the same pattern and whether the richness of all groups reacts similarly to environmental changes. 2. Our aim was to analyse the main factors explaining patterns of species richness in plankton, fish and submerged macrophyte assemblages in both turbid and clear subtropical shallow lakes. We analysed abiotic and biotic features of 18 subtropical, small-to mediumsized, shallow lakes along the Uruguayan coast. We compared both turbid and clear ecosystem states and evaluated the relative variance explained by the factors measured. 3. Variables describing lake and catchment morphology, as well as the percentage of the water column occupied by submerged macrophytes (%PVI) and water turbidity, had strong effects on taxon richness. Interestingly, individual biotic groups had dissimilar richness patterns. Macrophyte %PVI decreased with increasing lake area, while fish species richness showed the opposite pattern. Phytoplankton species richness increased with macrophyte %PVI, while the zooplankton richness pattern varied depending on the taxonomic group considered. 4. Overall, our results indicate that, as found for temperate lakes, a greater submerged plant cover promotes higher species richness in several groups, and that this may overwhelm the otherwise expected positive effect of lake size on species richness. On the other hand, small-bodied zooplankton predominated in lakes with high plant abundance. Our findings concur with recent studies, indicating that refuge capacity of aquatic plants might be weaker in (sub)tropical than in temperate shallow lakes.
Moina macrocopa hitherto unrecorded from the Neotropical Region is reported from Corrientes, northern Argentina. The features exhibited by the specimens found, which are described and illustrated, differ from that of M. m. americana, distributed in North America, and agree with those of the typical form. This apparent discrepancy and the probable introduction from the Old World are discussed. A key to the species of Moina occurring in South America is presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.