Exoglucanases secreted by two different strains from Candida albicans have been purified to homogeneity. The purified enzyme from each strain behaved as a non-glycosylated monomer (molecular weight 38,000) that was identical in terms of sodium dodecyl sulphate/polyacrylamide gel electrophoresis comigration, amino acid analysis and amino terminal sequence. The amino acid composition was similar to that of the major exoglucanase from Saccharomyces cerevisiae. In addition, these two enzymes displayed a 50% homology in the first 35 amino acids of the amino terminus. Antibodies against the deglycosylated exoglucanase (treated with Endo H) from S. cerevisiae were reactive with the exoglucanase from C. albicans and vice versa. Immunoblotting proved to be a semiquantitative method to detect C. albicans antigen in culture fluids. The exoglucanase from C. albicans appears to enter the secretory pathway without undergoing N-glycosylation.
Fractions of the glucan synthesized in vitro by glucan synthase preparations obtained by mechanical breakage of whole cells of Sacchromyces cerevisiae and Candida albicans were solubilized by sodium dodecyl sulphate (SDS). Part of this material migrated in denaturing electrophoresis at the level of a Coomassie Blue‐stained area. In addition, it was solubilized by both an exoglucanase and papain. These results suggest that some yeast glucan is built, associated with a protein.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.