V(D)J recombination proceeds according to defined developmental programs at T-cell receptor (TCR) and immunoglobulin loci as a function of cell lineage and stage of differentiation. Although the molecular details are still lacking, such regulation is thought to occur at the level of accessibility of chromosomal recombination signal sequences to the recombinase. The unique and complex organization of the TCRalpha/delta locus poses intriguing regulatory challenges in this regard: embedded TCRalpha and TCRdelta gene segments rearrange at distinct stages of thymocyte development, there is a highly regulated progression of primary followed by secondary rearrangements involving Jalpha segments, and there are important developmental constraints on V gene segment usage. The locus therefore provides a fascinating laboratory in which to explore the basic mechanisms underlying developmental control. We provide here a current view of cis-acting mechanisms that enforce the TCRalpha/delta locus developmental program, and we emphasize the unresolved issues that command the attention of our and other laboratories.
We have used site-directed mutagenesis of the hemagglutinin (H) glycoprotein of measles virus (MV) to investigate the molecular basis for the phenotypic differences observed between MV vaccine strains and recently isolated wild-type MV strains. The former downregulate CD46, the putative cellular receptor of MV, are positive for hemadsorption, and are fusogenic in HeLa cells, whereas the latter are negative for these phenotypic markers. CD46 downregulation in particular, could have profound consequences for the immunopathology of MV infection, as this molecule protects the cell from complement lysis. Mutagenesis of two amino acids, valine and tyrosine at positions 451 and 481, respectively, in the H protein from the vaccine-like Hallé MV strain to their counterparts, glutamate and asparagine, in the H protein from the wild-type Ma93F MV strain (creating the V451E/Y481N double mutation) abrogated CD46 downregulation, HeLa cell fusion, and hemadsorption. The converse double mutagenesis of the Ma93F H protein (E451V/N481Y) transferred the CD46-downregulating, fusogenic, and hemadsorption functions to this protein. The data provide the first mapping study of the functional domains of MV H. The consequences of these results for MV vaccine design and the role of CD46 in MV infection are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.