Cells enter senescence, a state of stable proliferative arrest, in response to a variety of cellular stresses, including telomere erosion, DNA damage, and oncogenic signaling, which acts as a barrier against malignant transformation in vivo. To identify genes controlling senescence, we conducted an unbiased screen for small hairpin RNAs that extend the life span of primary human fibroblasts. Here, we report that knocking down the chemokine receptor CXCR2 (IL8RB) alleviates both replicative and oncogene-induced senescence (OIS) and diminishes the DNA-damage response. Conversely, ectopic expression of CXCR2 results in premature senescence via a p53-dependent mechanism. Cells undergoing OIS secrete multiple CXCR2-binding chemokines in a program that is regulated by the NF-kappaB and C/EBPbeta transcription factors and coordinately induce CXCR2 expression. CXCR2 upregulation is also observed in preneoplastic lesions in vivo. These results suggest that senescent cells activate a self-amplifying secretory network in which CXCR2-binding chemokines reinforce growth arrest.
Animals maintain complex associations with a diverse microbiota living in their guts. Our understanding of the ecology of these associations is extremely limited in reptiles. Here, we report an in-depth study into the microbial ecology of gut communities in three syntopic and viviparous lizard species (two omnivores: Liolaemus parvus and Liolaemus ruibali and an herbivore: Phymaturus williamsi). Using 16S rRNA gene sequencing to inventory various bacterial communities, we elucidate four major findings: (i) closely related lizard species harbour distinct gut bacterial microbiota that remain distinguishable in captivity; a considerable portion of gut bacterial diversity (39.1%) in nature overlap with that found on plant material, (ii) captivity changes bacterial community composition, although host-specific communities are retained, (iii) faecal samples are largely representative of the hindgut bacterial community and thus represent acceptable sources for nondestructive sampling, and (iv) lizards born in captivity and separated from their mothers within 24 h shared 34.3% of their gut bacterial diversity with their mothers, suggestive of maternal or environmental transmission. Each of these findings represents the first time such a topic has been investigated in lizard hosts. Taken together, our findings provide a foundation for comparative analyses of the faecal and gastrointestinal microbiota of reptile hosts.
Phymaturus punae is a viviparous lizard endemic to the Provincial Reserve San Guillermo, San Juan (Argentina). We present the first life history data of P. punae, belonging to an interesting genus adapted to cold climates. Females reach sexual maturity at 80.6 mm, and males at 84.4 mm snout-vent length. There is sexual dimorphism represented by larger and more robust males, but females show a wider body and a proportionally greater interlimb length than males. In males, spermatozoa become abundant in both testes and epididymi in mid-summer. Vitellogenic and pregnant females occurred simultaneously in late spring and mid-summer indicating a biennial reproductive cycle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.