The chemokine CXC ligand 8 (CXCL8)͞IL-8 and related agonists recruit and activate polymorphonuclear cells by binding the CXC chemokine receptor 1 (CXCR1) and CXCR2. Here we characterize the unique mode of action of a small-molecule inhibitor (Repertaxin) of CXCR1 and CXCR2. Structural and biochemical data are consistent with a noncompetitive allosteric mode of interaction between CXCR1 and Repertaxin, which, by locking CXCR1 in an inactive conformation, prevents signaling. Repertaxin is an effective inhibitor of polymorphonuclear cell recruitment in vivo and protects organs against reperfusion injury. Targeting the Repertaxin interaction site of CXCR1 represents a general strategy to modulate the activity of chemoattractant receptors. L eukocyte trafficking into tissue sites of inflammation is directed by chemokines. Chemokines are grouped into four families based on a cysteine motif in the amino terminus of the protein (1, 2). Human CXC ligand 8 (CXCL8)͞IL-8 and related molecules are polymorphonuclear cells (PMN) chemoattractants. Two high-affinity human CXCL8 receptors are known, CXC chemokine receptor 1 (CXCR1) and CXC chemokine receptor 2 (CXCR2). Only one corresponding receptor has been identified in the mouse, and this is recognized by ligands that act as neutrophil attractant, although a mouse orthologue of CXCL8 has not been identified. By recruiting and activating PMN, CXCL8 and related rodent molecules have been implicated in a wide range of disease states characterized by PMN infiltration in organs, including reperfusion injury (RI) (3).G protein-coupled receptors (GPCR) are a prime target for the development of new strategies to control diverse pathologies (4-6). Antichemokine strategies include antibodies, N-terminal modified chemokines, and small-molecule antagonists (7-9). Here we describe a class of GPCR inhibitors that specifically block the inflammatory CXCL8 chemokine receptors CXCR1 and CXCR2 by means of an allosteric noncompetitive mode of interaction and protection against RI. Materials and MethodsReagents. Repertaxin (R)(Ϫ)-2-(4-isobutylphenyl)propionyl methansulfonamide) salified with L-lysine was dissolved in saline. Chemokines were from PeproTech (London). Chemicals, cell culture reagents, and protease inhibitors were from Sigma.Migration. Cell migration of human PMN and monocytes and rodent peritoneal PMN were evaluated in a 48-well microchemotaxis chamber with or without Repertaxin. Agonists (1 nM CXCL8, 10 nM N-formyl-L-methionyl-L-leucyl-L-phenylalanine (fMLP), 10 nM CXCL1, 2.5 nM CCL2, 1 nM C5a, 5 nM rat and mouse CXCL1, and 2.5 nM rat and mouse CXCL2) were seeded in the lower compartment. The chemotaxis chamber was incubated for 45 min (human PMN), 1 h (rodent PMN), or 2 h (monocytes). L1.2 migration was evaluated by using 5-m pore-size Transwell filters (Costar) (10). Mutation Analysis of CXCR1 and Signaling. The human CXCR1 ORF was PCR amplified from a CXCR1͞pCEP4 plasmid (kindly provided by P. M. Murphy, National Institutes of Health, Bethesda). Receptor mutants and chimeric re...
The time course of oxidative stress and tissue damage in zonal liver ischemia-reperfusion in rat liver in vivo was evaluated. After 180 min of ischemia, surface chemiluminescence decreased to zero, state 3 mitochondrial respiration decreased by 70-80%, and xanthine oxidase activity increased by 26% without change in the water content and in the activities of superoxide dismutase, catalase, and glutathione peroxidase. After reperfusion, marked increases in oxyradical production and tissue damage were detected. Mitochondrial oxygen uptake in state 3 and respiratory control as well as the activities of superoxide dismutase, catalase, and glutathione peroxidase and the level of nonenzymatic antioxidants (evaluated by the hydroperoxide-initiated chemiluminescence) were decreased. The severity of the post-reperfusion changes correlated with the time of ischemia. Morphologically, hepatocytes appeared swollen with zonal cord disarrangement which ranged from mild to severe for the tissue reperfused after 60-180 min of ischemia. Neutrophil infiltration was observed after 180 min of ischemia and 30 min of reperfusion. Mitochondria appear as the major source of hydrogen peroxide in control and in reperfused liver, as indicated by the almost complete inhibition of hydrogen peroxide production exerted by the uncoupler carbonylcyanide p-(trifluoromethoxy) phenylhydrazone. Additionally, inhibition of mitochondrial electron transfer by antimycin in liver slices reproduced the inhibition of state 3 mitochondrial respiration and the increase in hydrogen peroxide steady-state concentration found in reperfused liver. Increased rates of oxyradical production by inhibited mitochondria appear as the initial cause of oxidative stress and liver damage during early reperfusion in rat liver. (J. Clin. Invest. 1993.91:456-464.) Key words: chemiluminescence * hydrogen peroxide -mitochondrial damage * reperfusion injury. xanthine oxidase
The application of Yb-HPDO3A to measure extracellular tumor pH provides a good spatio-temporal resolution and it does not require the prior knowledge of the contrast agent concentration. The herein reported data support the potential clinical translation of Yb-HPDO3A.
Ursodeoxycholic acid (UDCA) improves clinical and biochemical indices in primary biliary cirrhosis and prolongs survival free of liver transplantation. Recently, it was suggested that the cytoprotective mechanisms of UDCA may be mediated by protection against oxidative stress, which is involved in the development of cirrhosis induced by chronic cholestasis. The aims of the current study were 1) to identify the mechanisms involved in glutathione depletion, oxidative stress, and mitochondrial impairment during biliary cirrhosis induced by chronic cholestasis in rats; and 2) to determine the mechanisms associated with the protective effects of UDCA against secondary biliary cirrhosis. The findings of the current study indicate that UDCA partially prevents hepatic and mitochondrial glutathione depletion and oxidation resulting from chronic cholestasis. Impairment of biliary excretion was accompanied by decreased steady-state hepatic levels of ␥-glutamyl cysteine synthetase and ␥-cystathionase messenger RNAs. UDCA treatment led to up-regulation of ␥-glutamyl cysteine synthetase in animals with secondary biliary cirrhosis and prevented the marked increases in mitochondrial peroxide production and hydroxynonenalprotein adduct production that are observed during chronic cholestasis. A population of damaged and primarily apoptotic hepatocytes characterized by dramatic decreases in mitochondrial cardiolipin levels and membrane potential as well as phosphatidylserine exposure evolves in secondary biliary cirrhosis. UDCA treatment prevents the growth of this population along with the decreases in mitochondrial cardiolipin levels and membrane potential that are induced by chronic cholestasis. In conclusion, UDCA treatment enhances the antioxidant defense mediated by glutathione; in doing so, this treatment prevents cardiolipin depletion and cell injury in animals with secondary biliary cirrhosis. (HEPATOLOGY 2004;39:711-720.)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.