Here we demonstrated that extracellular, not intracellular, amyloid-beta (Abeta) and the associated cytotoxic glial neuroinflammatory response are major contributors to early neuronal loss in a PS1xAPP model. A significant loss of principal (27%) and SOM/NPY (56-46%) neurons was found in the entorhinal cortex at 6 months of age. Loss of principal cells occurred selectively in deep layers (primarily layer V) whereas SOM/NPY cell loss was evenly distributed along the cortical column. Neither layer V pyramidal neurons nor SOM/NPY interneurons displayed intracellular Abeta immunoreactivity, even after formic acid retrieval; thus, extracellular factors should be preferentially implicated in this selective neurodegeneration. Amyloid deposits were mainly concentrated in deep layers at 4-6 months, and of relevance was the existence of a potentially cytotoxic inflammatory response (TNFalpha, TRAIL, and iNOS mRNAs were upregulated). Moreover, non-plaque associated activated microglial cells and reactive astrocytes expressed TNFalpha and iNOS, respectively. At this age, in the hippocampus of same animals, extracellular Abeta induced a non-cytotoxic glial activation. The opposite glial activation, at the same chronological age, in entorhinal cortex and hippocampus strongly support different mechanisms of disease progression in these two regions highly affected by Abeta pathology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.