Radar sensors have great advantages over other sensors in estimating the motion states of moving objects, because they detect velocity components within one measurement cycle. Moreover, numerous successes have already been achieved regarding the classification of such objects. However, the advantage of instantaneous velocity measurement is lost when detecting static objects, so that their classification is much more demanding. In this paper, we use semantic segmentation networks to distinguish between frequently occurring infrastructure objects. The resulting semantic grids provide a location-based classification of the vehicle environment. Since even modern radars have a significantly poorer angular resolution than lidars, the relatively thin radar point cloud is accumulated in advance and transformed into 2D or 3D grids that act as network inputs. Occupancy grids are particularly advantageous here, since they calculate not only the obstacles but also the free spaces. With suitable parameter selection, which is very challenging due to the complexity of radar measurement, the resulting grids allow for good association with camera images. Finally, in order to evaluate possible advantages of 3D grids as network input with respect to the segmentation result, we created and evaluated a simulation dataset and two different real-world datasets in car parks and on motorways. As a result, Jaccard coefficients between 81% and 88% were achieved, depending on the dataset. It was also found that 3D input images lead to improvements in the car park dataset.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.