The modulation of the pyloric rhythm of the stomatogastric ganglion of the crab, Cancer borealis, by crustacean cardioactive peptide (CCAP) is described. CCAP activated pyloric rhythms in most silent preparations, and altered the phase relationships of pyloric motor neuron firing in all preparations. In CCAP, the pyloric rhythms were characterized by long lateral pyloric (LP) neuron bursts of action potentials. The threshold for CCAP action was ϳ10 Ϫ10 M, with increasing effects at higher CCAP concentrations. The changes in motor pattern evoked by CCAP produced significant changes in LP-innervated muscle movement. These movements were additionally potentiated by CCAP applications to isolated nerve-muscle preparations. Thus, enhanced motor neuron firing and increase of the gain of the neuromuscular junctions are likely to operate coordinately in response to hormonally released CCAP. High CCAP concentrations sometimes resulted in modification of the normal 1:1 alternation between the pyloric dilator (PD) and LP neurons to patterns of 2:1, 3:1, or 4:1 alternation. CCAP seems to activate slow intrinsic oscillations in the LP neuron, as well as enhance faster oscillations in the pacemaker group of PD/ anterior burster (AB) neurons. Simulations of fast and slow oscillators with reciprocal inhibitory coupling suggest mechanisms that could account for the mode switch from 1:1 alternation to multiple PD bursts alternating with one LP neuron burst.
At least 10 different substances modulate the amplitude of nerve-evoked contractions of the gastric mill 4 (gm4) muscle of the crab, Cancer borealis. Serotonin, dopamine, octopamine, proctolin, red pigment concentrating hormone, crustacean cardioactive peptide, TNRNFLRFamide, and SDRNFLRFamide increased and -allatostatin-3 and histamine decreased the amplitude of nerve-evoked contractions. Modulator efficacy was frequency dependent; TNRNFLRFamide, proctolin, and allatostatin-3 were more effective when the motor neuron was stimulated at 10 Hz than at 40 Hz, whereas the reverse was true for dopamine and serotonin. The modulators that were most effective at high stimulus frequencies produced a significant decrease in muscle relaxation time; those that were most effective at low stimulus frequencies produced modest increases in relaxation time. Thus modulator actions that appear redundant when examined only at one stimulus frequency are differentiated when a range of stimulus dynamics is studied. The effects of TNRNFLRFamide, serotonin, proctolin, dopamine, and -allatostatin-3 on the amplitude and facilitation of nerve-evoked excitatory junctional potentials (EJPs) in the gm4 and gastric mill 6 (gm6) muscles were compared. The EJPs in gm4 have a large initial amplitude and show relatively little facilitation, whereas the EJPs in gm6 have a small initial amplitude and show considerable facilitation. Modulators that enhanced contractions also enhanced EJP amplitude; -allatostatin-3 reduced EJP amplitude. The effects of these modulators on EJP amplitude were modest and showed no significant frequency dependence. This suggests that the frequency dependence of modulator action on contraction results from effects on excitation-contraction coupling. The modulators affected facilitation at these junctions in a manner consistent with a change in release probability. They produced a change in facilitation that is inversely related to their action on EJP amplitude.
The strength of many synapses is modified by various use and time-dependent processes, including facilitation and depression. A general description of synaptic transfer characteristics must account for the history-dependence of synaptic efficacy and should be able to predict the postsynaptic response to any temporal pattern of presynaptic activity. To generate such a description, we use an approach similar to the decoding method used to reconstruct a sensory input from a neuronal firing pattern. Specifically, a mathematical fit of the postsynaptic response to an isolated action potential is multiplied by an amplitude factor that depends on a time-dependent function summed over all previous presynaptic spikes. The amplitude factor is, in general, a nonlinear function of this sum. Approximate forms of the time-dependent function and the nonlinearity are extracted from the data, and then both functions are constructed more precisely by a learning algorithm. This approach, which should be applicable to a wide variety of synapses, is applied here to several crustacean neuromuscular junctions. After training on data from random spike sequences, the method predicts the postsynaptic response to an arbitrary train of presynaptic action potentials. Using a model synapse, we relate the functions used in the fit to underlying biophysical processes. Fitting different neuromuscular junctions allows us to compare their responses to sequences of action potentials and to contrast the time course and degree of facilitation or depression that they exhibit.
The effects of the extended FLRFamide-like peptides, TNRNFLRFamide and SDRNFLRFamide, were studied on the stomach musculature of the crab Cancer borealis. Peptide-induced modulation of nerve-evoked contractions was used to screen muscles. All but 2 of the 17 muscles tested were modulated by the peptides. In several muscles of the pyloric region, peptides induced long-lasting myogenic activity. In other muscles, the peptides increased the amplitude of nerve-evoked contractions, excitatory junctional potentials, and excitatory junctional currents, but produced no apparent change in the input resistance of the muscle fibers. The threshold concentration was 10(-10) M for TNRNFLRFamide and between 10(-9) M to 10(-8) M for SDRNFLRFamide. The absence of direct peptide-containing innervation to these muscles and the wide-spread sensitivity of these muscles to the peptides suggest that TNRNFLRFamide and SDRNFLRFamide may be released from neurosecretory structures to modulate stomatogastric musculature hormonally. We speculate that hormonally released peptide will be crucial for maintaining appreciable muscle contraction in response to low-frequency and low-intensity motor discharge.
Gamma-aminobutyric acid type A (GABAA) receptors expressed within the medial preoptic area (mPOA) are known to play a critical role in regulating sexual and neuroendocrine functions. In the rat brain, high levels of expression of the gamma1 subunit mRNA of the GABAA receptor are restricted to a limited number of regions that mediate sexual behaviors, including the mPOA. The biophysical and pharmacological profiles of native gamma1-containing receptors in neurons are unknown. Here, we have characterized the properties of GABAA receptor-mediated spontaneous inhibitory postsynaptic currents (sIPSCs) and currents elicited by fast perfusion of GABA to isolated mPOA neurons of juvenile male and female rats. No significant sex-specific differences were evident in the mean peak amplitude, distribution of event amplitudes, kinetics of current decay, or the frequency of sIPSCs. The profile of modulation of sIPSCs by diazepam, beta-CCM and zolpidem, allosteric modulators that act at the benzodiazepine (BZ) site of the GABAA receptor, support the assertion that mPOA neurons of both sexes express functional gamma1-containing receptors. The ability of zolpidem to modulate both sIPSC amplitude and currents elicited by rapid perfusion of GABA to mPOA neurons differed significantly between the sexes. Zolpidem reversibly induced negative modulation of currents in mPOA neurons isolated from male rats, but had no effect in mPOA neurons from female rats. Concentration-response analysis of responses in neurons acutely isolated from male rats indicated an IC50 of 58 nM with maximal decreases of approximately 50% of control peak current amplitude. In situ hybridization analysis demonstrated that levels of the gamma1 subunit mRNA are significantly higher in mPOA neurons from male than female rats. No significant sex-specific differences were detected in the levels of alpha1, alpha2, or alpha5 mRNAs. These results suggest that native gamma1-containing receptors are expressed in primary neurons of the mPOA and that sex-specific differences in the expression of this subunit may contribute to sexual dimorphism in GABAA receptor modulation by compounds acting at the BZ site.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.