Chorological information concerning 182 taxa of monocotyledons endemic to the Iberian Peninsula and Balearic Islands was compiled and related to the 100×100 km, 50×50 km and 10×10 km UTM grids. Distributions were analysed using multivariate methods (two‐way indicator species analysis and detrended correspondence analysis) for each scale. Comparison of results allows recognition of several floristic elements and sectors (i.e. Balearic, Murcian‐Almerian, south western) common to all three scales, whereas other regions are assigned to different sectors depending on the grid size considered. As a consequence of the increase in detail, characteristics such as number of sectors, the outline of boundaries and continuity or fragmentation of the areas also change. These factors are discussed.
This article delineates the compositional regions present in the Iberian-Balearic fern flora and compares these regions to previously proposed biogeographic units. It also assesses the extent to which environmental variables could explain the regions and the fern species richness gradients found within them. A combination of 40 previously published and new maps were used to compile the distribution of 123 pteridophytes on a 50 9 50 km UTM grid. Cluster analysis of the resulting 257 squares was used to classify 10 regions based on fern species assemblages. Discriminant function analysis identified the environmental variables that best explained these fern composition regions. Using generalized linear models; the number of species in each square was regressed against topography, climate, geology, environmental diversity, land use and spatial variables within each region. Two main latitudinal pteridophyte zones can be recognized in the Iberian Peninsula. These two zones are longitudinally subdivided into two sub zones. The 10 regions established significantly differ both in species richness and influential environmental variables. Climatic variables discriminate the most among regions, followed by topography, heterogeneity and geology. Pteridophyte richness varies, with richer areas being located along the coast and the main mountain ranges and the poorest areas being in the central plateaus and some north eastern and south western river basins. Species richness variation in Iberia is positively correlated with altitude range, precipitation, maximum altitude and area with siliceous soils. It is negatively correlated with the total annual days of sun, however. The fact that species richness is explained by different variables within each of the 10 regions indicates that the specific factors determining the spatial distribution of species richness vary from region to region. Some coastal regions are poorly explained by the model, and display a negative correlation with the selected causal factors. This finding suggests that persistent historic effects might play a local role in determining species assemblages in these regions.
The Global Strategy for Plant Conservation (GSPC) seeks to assess the conservation status of the world vascular plants by 2020, and to guarantee that at least 75% threatened taxa are conserved in situ. A comprehensive evaluation of IUCN categories for 7269 Spanish vascular plants (GSPC Target 2), using distribution data and environmental niche models, is presented. A gap analysis to assess the percentage of threatened plants effectively conserved in situ (considering national parks, plant micro-reserves and recovery or conservation plans) was also conducted (Target 7). The result is that only 44.4% threatened species are subject to an adequate in situ protection. An appropriate management of additional natural protected areas towards the conservation of threatened plants would make Spain meet this threshold, but severe deficiencies should be corrected. The methodology presented here is proposed as a tool to assess the degree of achievement of GSPC targets. This procedure can be quickly implemented and allows an easy evaluation of the progress, as well as the pending tasks in a given period of time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.