The receiver operating characteristic (ROC) curve and their associated summary indices, such as the Youden index, are statistical tools commonly used to analyze the discrimination ability of a (bio)marker to distinguish between two populations. This paper presents the concept of Youden index in the context of the generalized ROC (gROC) curve for non-monotone relationships. The interval estimation of the Youden index and the associated cutoff points in a parametric (binormal) and a non-parametric setting is considered. Monte Carlo simulations and a real-world application illustrate the proposed methodology.
Several classical time series models can be written as a regression model between the components of a strictly stationary bivariate process. Some of those models, such as the ARCH models, share the property of proportionality of the regression function and the scale function, which is an interesting feature in econometric and financial models. In this article, we present a procedure to test for this feature in a non-parametric context. The test is based on the difference between two non-parametric estimators of the distribution of the regression error. Asymptotic results are proved and some simulations are shown in the paper in order to illustrate the finite sample properties of the procedure. Copyright (c) 2009 Board of the Foundation of the Scandinavian Journal of Statistics.
The receiver operating characteristic curve is a popular graphical method often used to study the diagnostic capacity of continuous (bio)markers. When the considered outcome is a time-dependent variable, two main extensions have been proposed: the cumulative/dynamic receiver operating characteristic curve and the incident/dynamic receiver operating characteristic curve. In both cases, the main problem for developing appropriate estimators is the estimation of the joint distribution of the variables time-to-event and marker. As usual, different approximations lead to different estimators. In this article, the authors explore the use of a bivariate kernel density estimator which accounts for censored observations in the sample and produces smooth estimators of the time-dependent receiver operating characteristic curves. The performance of the resulting cumulative/dynamic and incident/dynamic receiver operating characteristic curves is studied by means of Monte Carlo simulations. Additionally, the influence of the choice of the required smoothing parameters is explored. Finally, two real-applications are considered. An R package is also provided as a complement to this article.
The receiver operating characteristic (ROC) curve is a tool of extensive use to analyse the discrimination capability of a diagnostic variable in medical studies. In certain situations, the presence of a covariate related to the diagnostic variable can increase the discriminating power of the ROC curve. In this article, we model the effect of the covariate over the diagnostic variable by means of non-parametric location-scale regression models. We propose a new non-parametric estimator of the conditional ROC curve and study its asymptotic properties. We also present some simulations and an illustration to a data set concerning diagnosis of diabetes.
EKC literature usually dismiss the major influence of energy prices. (2) Relative energy prices invalidate the evidence in favor of the EKC hypothesis. (3) Results may explain some contradictory observations found in the EKC literature. (4) Nowadays reduction in energy prices may break decarbonization trends. (5) Direct action by policymakers is required to break the positive GDP-CO 2 link.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.