BackgroundLike other scientific fields, such as cosmology, high-energy physics, or even the life sciences, medicine and healthcare face the challenge of an extremely quick transformation into data-driven sciences. This challenge entails the daunting task of extracting usable knowledge from these data using algorithmic methods. In the medical context this may for instance realized through the design of medical decision support systems for diagnosis, prognosis and patient management. The intensive care unit (ICU), and by extension the whole area of critical care, is becoming one of the most data-driven clinical environments.ResultsThe increasing availability of complex and heterogeneous data at the point of patient attention in critical care environments makes the development of fresh approaches to data analysis almost compulsory. Computational Intelligence (CI) and Machine Learning (ML) methods can provide such approaches and have already shown their usefulness in addressing problems in this context. The current study has a dual goal: it is first a review of the state-of-the-art on the use and application of such methods in the field of critical care. Such review is presented from the viewpoint of the different subfields of critical care, but also from the viewpoint of the different available ML and CI techniques. The second goal is presenting a collection of results that illustrate the breath of possibilities opened by ML and CI methods using a single problem, the investigation of septic shock at the ICU.ConclusionWe have presented a structured state-of-the-art that illustrates the broad-ranging ways in which ML and CI methods can make a difference in problems affecting the manifold areas of critical care. The potential of ML and CI has been illustrated in detail through an example concerning the sepsis pathology. The new definitions of sepsis and the relevance of using the systemic inflammatory response syndrome (SIRS) in its diagnosis have been considered. Conditional independence models have been used to address this problem, showing that SIRS depends on both organ dysfunction measured through the Sequential Organ Failure (SOFA) score and the ICU outcome, thus concluding that SIRS should still be considered in the study of the pathophysiology of Sepsis. Current assessment of the risk of dead at the ICU lacks specificity. ML and CI techniques are shown to improve the assessment using both indicators already in place and other clinical variables that are routinely measured. Kernel methods in particular are shown to provide the best performance balance while being amenable to representation through graphical models, which increases their interpretability and, with it, their likelihood to be accepted in medical practice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.