In this paper, we prove an analogue of the uniqueness theorems of Führer [15] and Amann and Weiss [1] to cover the degree of Fredholm operators of index zero constructed by Fitzpatrick, Pejsachowicz and Rabier [13], whose range of applicability is substantially wider than for the most classical degrees of Brouwer [5] and Leray–Schauder [22]. A crucial step towards the axiomatization of this degree is provided by the generalized algebraic multiplicity of Esquinas and López-Gómez [8, 9, 25], $$\chi $$
χ
, and the axiomatization theorem of Mora-Corral [28, 32]. The latest result facilitates the axiomatization of the parity of Fitzpatrick and Pejsachowicz [12], $$\sigma (\cdot ,[a,b])$$
σ
(
·
,
[
a
,
b
]
)
, which provides the key step for establishing the uniqueness of the degree for Fredholm maps.
This paper establishes some hidden connections between the theory of generalized algebraic multiplicities, $\chi$, and the notion of orientability of vector bundles. The novel approach adopted in it facilitates the definition of several invariants closely related to the first Stiefel--Whitney characteristic class through some path integration techniques.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.