We study a binary-cell-state eight-cell neighborhood two-dimensional cellular automaton model of a quasi-chemical system with a substrate and a reagent. Reactions are represented by semi-totalistic transitions rules: every cell switches from state 0 to state 1 depending on if the sum of neighbors in state 1 belongs to some specified interval, cell remains in state 1 if the sum of neighbors in state 1 belong to another specified interval. We investigate space-time dynamics of 1296 automata, establish morphology-bases classification of the rules, explore precipitating and excitatory cases and scrutinize collisions between mobile and stationary localizations (gliders, cycle life and still-life compact patterns). We explore reaction–diffusion like patterns produced as a result of collisions between localizations. Also, we propose a set of rules with complex behavior called Life 2c22.
Using Rule 126 elementary cellular automaton (ECA) we demonstrate that a chaotic discrete system -when enriched with memory -hence exhibits complex dynamics where such space exploits on an ample universe of periodic patterns induced from original information of the ahistorical system. First we analyse classic ECA Rule 126 to identify basic characteristics with mean field theory, basins, and de Bruijn diagrams. In order to derive this complex dynamics, we use a kind of memory on Rule 126; from here interactions between gliders are studied for detecting stationary patterns, glider guns and simulating specific simple computable functions produced by glider collisions.
This article finds feasible solutions to the travelling salesman problem, obtaining the route with the shortest distance to visit n cities just once, returning to the starting city. The problem addressed is clustering the cities, then using the NEH heuristic, which provides an initial solution that is refined using a modification of the metaheuristic Multi-Restart Iterated Local Search MRSILS; finally, clusters are joined to end the route with the minimum distance to the travelling salesman problem. The contribution of this research is the use of the metaheuristic MRSILS, that in our knowledge had not been used to solve the travelling salesman problem using clusters. The main objective of this article is to demonstrate that the proposed algorithm is more efficient than Genetic Algorithms when clusters are used. To demonstrate the above, both algorithms are compared with some cases taken from the literature, also a comparison with the best-known results is done. In addition, statistical studies are made in the same conditions to demonstrate this fact. Our method obtains better results in all the 10 cases compared.
Cast resin medium voltage instrument transformer are highly used because of several benefits over other type of transformers. Nevertheless, the high operating temperatures affects their performance and durability. It is important to forecast the hot spots in the transformer. The aim of this study is to develop a model based on Artificial Neural Networks (ANN) theory to be able to forecast the temperature in seven points, taking into account twenty-six input data of transformer design features. 792 simulations were carried out in COMSOL Multiphysics®to emulate the heat transfer in the transformer. The data obtained were used to train 1110 ANN with different number of neurons and hidden layers. The ANN with the best performance (R = 1, MSE=0.003455) has three hidden layers with 10, 9 and 9 neurons respectively. The ANN predictions were validated with finite element simulations and laboratory thermal tests which present similar patterns. With this accuracy in the prediction of hot-spot temperature, this ANN can be used to optimize the design of instrument transformers. INDEX TERMS Artificial neural networks, resin-cast instrument transformer, epoxy resins, finite element analysis, hot-spot temperature
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.