We describe a simulation-based Design Space Exploration procedure (DynDSE) for wearable IoT edge devices that retrieve events from streaming sensor data using context-adaptive pattern recognition algorithms. We provide a formal characterisation of the design space, given a set of system functionalities, components and their parameters. An iterative search evaluates configurations according to a set of requirements in simulations with actual sensor data. The inherent trade-offs embedded in conflicting metrics are explored to find an optimal configuration given the application-specific conditions. Our metrics include retrieval performance, execution time, energy consumption, memory demand, and communication latency. We report a case study for the design of electromyographic-monitoring eyeglasses with applications in automatic dietary monitoring. The design space included two spotting algorithms, and two sampling algorithms, intended for real-time execution on three microcontrollers. DynDSE yielded configurations that balance retrieval performance and resource consumption with an F1 score above 80% at an energy consumption that was 70% below the default, non-optimised configuration. We expect that the DynDSE approach can be applied to find suitable wearable IoT system designs in a variety of sensor-based applications.
This paper investigates a context-adaptive sample acquisition strategy at sub-Nyquist sampling rate for wearable embedded sensor devices. Our approach can be applied to compressive sensing frameworks to minimise sampling and transmission costs. We consider a context estimate to represent the local signal structure and a feed-forward response model to continuously tune signal acquisition of an online sampling and transmission system. To evaluate our approach, we analysed the performance in different pattern recognition scenarios. We report three case studies here: (1) eating monitoring based on electromyography measurements in smart eyeglasses, (2) human activity recognition based on waist-worn inertial sensor data, and (3) heartbeat detection and arrhythmia classification based on single-lead electrocardiogram readings. Compared to conventional sub-Nyquist sampling, our context-adaptive approach saves between 13% to 22% of energy, while achieving similar pattern recognition performance and reconstruction error.
Due to formal academic regulations, the affiliation of the university has been amended, and an “Acknowledgements” section has been added to the original publication [...]
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.