In order to study and understand the adsorption process in a liquid-solid interface, it is necessary to know both textural and chemical properties of the adsorbent. It is also important to know the behavior of the solid in a liquid medium, considering that the interaction can produce some changes in the texture and the electrochemical properties when the adsorbent is immersed in a solvent or a solution. The study of the influence of these properties in the adsorption process with techniques like immersion microcalorimetry can provide direct information on particular liquid-solid interactions. The parameter that is evaluated by immersion microcalorimetry is the immersion enthalpy, ΔH im. Immersion enthalpy is defined as the energy change at temperature and pressure constants when the surface of the solid is completely immersed in a wetting liquid in which the solid is insoluble and does not react. The immersion calorimetry can be a versatile, sensitive and precise technique that has many advantages for the characterization of porous solids. The versatility of immersion microcalorimetry is because changes in surface area, surface chemistry, or microporosity will result in a change in immersion energy. The interactions solid-liquid can be physical or chemical type, the physical present a lower amount of energy than that generated when exist chemical interactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.