Programmable soft materials have shown applications in artificial muscles, soft robotics, flexible electronics, and biomedicines due to their adaptive structural transformations. As an ordered soft material, directional shape changes of liquid crystal elastomer (LCE) can be easily achieved via external stimuli thanks to its anisotropic elasticity. However, harnessing the interplay between molecular ordering, geometry, and shape morphing in this anisotropic material to create programmable and complex shape changes remains a challenge. Here, by integrating the concepts of kirigami or Chinese paper cutting “JianZhi” in the light‐actuated LCE encoded with controlled molecular orientations, various complex 3D shape morphing behaviors are demonstrated. Versatile combinations of fundamental shape changes such as bending, folding, twisting, and rolling are enabled by fine‐tuning the molecular orientations and geometries in the monolithic LCE kirigami. Furthermore, various functions such as fluttering of the Chinese crane bird “QianZhiHe,” arbitrary directional locomotion in the annulus and linear locomotion in the complex Chinese character are also realized. These complex, fast‐response, untethered, remote, reversible, and programmable shape morphologies actuated in a monolith of LCE kirigami will open opportunities in soft robotics and smart materials.
Oriented arrays of nanofibers are ubiquitous in nature and have been widely used in recreation of the biological functions such as bone and muscle tissue regenerations. However, it remains a challenge to produce nanofiber arrays with a complex organization by using current fabrication techniques such as electrospinning and extrusion. In this work, we propose a method to fabricate the complex organization of nanofiber structures templated by a spatially varying ordered liquid crystal host, which follows the pattern produced by a maskless projection display system. By programming the synchronization of the rotated polarizer and projected segments with different shapes, various configurations of nanofiber organization ranging from a single to two-dimensional lattice of arbitrary topological defects are created in a deterministic manner. The nanofiber arrays can effectively guide and promote neurite outgrowth. The application of nanofibers with arced profiles and topological defects on neural tissue organization is also demonstrated. This finding, combined with the versatility and programmability of nanofiber structures, suggests that they will help solve challenges in nerve repair, neural regeneration, and other related tissue engineering fields.
Porous silicon films are currently under intense investigation for optical, photoelectric, thermal and electronic applications. In this work, the silica films have been prepared by a sol-gel process using a CTAB template. As an improvement, TiO 2 was doped in silica sol to produce the TiO 2 -hybrid SiO 2 Porous Film, and the hydrophobic activation of the film was carried out. The chemical and physical changes during sol-gel process were analyzed using DSC-TGA and FTIR. The structure and morphology of films were characterized by XRD and AFM. The experimental results show that the fabricated films have a nano-porous structure. The porous silica film (mean pore size 50 nm) is about 500 nm thick. The mechanical reliability of the film is well, and the contact angle of film is above 90 ° after hydrophobic activation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.