Objetivo: Proponer un procedimiento metodológico que sirva de guía para aplicar técnicas en la evaluación de la incertidumbre de medida, como son: GUM, MMC y Bayes; además, de desarrollar una aplicación en un caso de estudio no trivial. Materiales y métodos: En el presente artículo, se proponen un conjunto de pasos que permiten validar la evaluación de incertidumbre de medida a partir de técnicas como GUM, MMC y Bayes; estas se aplicaron como estrategia para evaluar la incertidumbre de un proceso de medición indirecta, donde el experimento de pruebas consistió en determinar el nivel de un fluido a través de la medición de presión hidrostática que genera el fluido en estado estacionario sobre la base de un contenedor. Se compararon los resultados obtenidos con cada técnica. Resultados y discusión: se encontró que el uso de la GUM es válido en el fenómeno caso de estudio, sin embargo, los resultados obtenidos aplicando el enfoque Bayesiano y el MMC ofrecieron información complementaria de mucha utilidad, como es la función de densidad de probabilidad (FDP) del mensurando, que permitió una mejor descripción del fenómeno. Asimismo, las FDP a posteriori obtenidas con Bayes permitieron aproximar a valores más cercanos en torno de los verdaderos valores del mensurando, y los intervalos de los posibles valores fueron más amplios que los que ofrecieron el MMC y la GUM. Conclusiones: En el contexto del caso de estudio se tiene que el enfoque bayesiano presenta resultados más realistas que GUM y MMC; además de la ventaja conceptual que presenta Bayes, de la posibilidad de actualizar los resultados de la evaluación de incertidumbre ante la presencia de nueva evidencia.
<p>En el presente artículo se plantea la evaluación de un conjunto de distribuciones a priori para los parámetros de escala del modelo de regresión Poisson inflado con ceros (conocido como modelo ZIP por sus siglas en inglés). Tradicionalmente se utiliza la distribución gamma-inversa como a priori para los parámetros de escala. Algunos estudios han mostrado que cuando los valores de los hiperparámetros de esta distribución son muy pequeños, las inferencias a posteriori no son adecuadas. El interés se centra en evaluar tres distribuciones a priori para los parámetros de escala del modelo: la gamma-inversa; la Half Cauchy que se ha usado para la situación planteada y que ha demostrado funcionar adecuadamente; y la beta 2 escalada (SBeta2) la cual es una distribución de colas pesadas que tiene un mejor comportamiento en el origen y en la cola derecha.</p><p>Se desarrolla un estudio de simulación, con el que se pretende analizar el efecto de la distribución a priori asignada a los parámetros de escala sobre el encogimiento de los parámetros a posteriori del modelo; además se evalúa ante la presencia de observaciones atípicas cómo es el ajuste que el modelo realiza de estas, con cada una de las distribuciones a priori candidatas para los parámetros de escala. El análisis se centra en estas dos características (encogimiento de los parámetros a posteriori y ajuste de observaciones atípicas) pues son estas las principales críticas que diferentes autores plantean al uso de la distribución gamma-inversa como a priori para los parámetros de escala. Finalmente se presenta una aplicación con datos reales.</p>
Objetivo: Proponer un criterio para determinar el tamaño de muestra en simulaciones estocásticas de MC (Monte Carlo) y MCMC (Markov chain Monte Carlo), garantizando una determinada precisión en la estimación de parámetros. Se busca que la precisión se garantice de forma adimensional. Materiales y métodos: El presente artículo propone un criterio buscando cumplir con el objetivo planteado. Además, de una metodología para la aplicación del mismo. Resultados y discusión: Se presenta la aplicación de la metodología en 3 contextos diferentes: Simulación de MC en que la muestra de interés presenta variabilidad moderada, simulación de MC en que la muestra de interés presenta variabilidad excesiva y simulación de MCMC. En todos los casos se obtienen adecuadas estimaciones del número de corridas MC y MCMC a partir de muestras relativamente pequeñas. Además, la aplicación de la metodología representa únicamente un costo computacional adicional marginal. Conclusiones: El criterio presentado en este artículo permite determinar el tamaño de muestra en simulaciones estocásticas, garantizando precisión adimensional en la estimación de parámetros.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.