Arc volcanism and trace-element recycling are controlled by the devolatilization of oceanic crust during subduction. The type of fluid—either aqueous fluids or hydrous melts—released during subduction is controlled by the thermal structure of the subduction zone. Recent thermomechanical models and results from experimental petrology argue that slab melting occurs in almost all subduction zones, although this is not completely supported by the rock record. Here we show via phase equilibrium modeling that melting of either fresh or hydrothermally altered basalt rarely occurs during subduction, even at water-saturated conditions. Melting occurs only along the hottest slab-top geotherms, with aqueous fluids being released in the forearc region and anatexis restricted to subarc depths, leading to high-SiO2 adakitic magmatism. We posit that aqueous fluids and hydrous melts preferentially enhance chemical recycling in “hot” subduction zones. Our models show that subducted hydrothermally altered basalt is more fertile than pristine basaltic crust, enhancing fluid and melt production during subduction and leading to a greater degree of chemical recycling. In this contribution, we put forward a petrological model to explain (the lack of) melting during the subduction of oceanic crust and suggest that many large-scale models of mass transfer between Earth’s surface and interior may require revision.
Archean (4.0–2.5 Ga) tonalite–trondhjemite–granodiorite (TTG) terranes represent fragments of Earth’s first continents that formed via high-grade metamorphism and partial melting of hydrated basaltic crust. While a range of geodynamic regimes can explain the production of TTG magmas, the processes by which they separated from their source and acquired distinctive geochemical signatures remain uncertain. This limits our understanding of how the continental crust internally differentiates, which in turn controls its potential for long-term stabilization as cratonic nuclei. Here, we show via petrological modeling that hydrous Archean mafic crust metamorphosed in a non-plate tectonic regime produces individual pulses of magma with major-, minor-, and trace-element signatures resembling—but not always matching—natural Archean TTGs. Critically, magma hybridization due to co-mingling and accumulation of multiple melt fractions during ascent through the overlying crust eliminates geochemical discrepancies identified when assuming that TTGs formed via crystallization of discrete melt pulses. We posit that much Archean continental crust is made of hybrid magmas that represent up to ~ 40 vol% of partial melts produced along thermal gradients of 50–100 °C/kbar, characteristic of overthickened mafic Archean crust at the head of a mantle plume, crustal overturns, or lithospheric peels.
Trace elements in zircon are a promising proxy with which to quantitatively study Earth’s long-term lithospheric processes and its geodynamic regimes. The zircon Eu anomaly reflects the crystallization environment of its felsic or intermediate parental magma. In particular, it provides insight into the water content, magmatic redox conditions, and the extent of plagioclase fractionation in the source rock or its occurrence as a cogenetic crystallizing phase from the magma. We performed a statistical analysis of Eu anomalies from a compilation of detrital zircons over geologic time and found a major decrease in Eu anomaly ca. 2.5 Ga and an important increase ca. 0.9 Ga. Coupled with thermodynamic modeling, we suggest that these variations could be due to long-term change in the chemical system of the mafic source from which the intermediate to felsic melt and derived zircons were produced. The 2.5 Ga drop was likely associated with an enrichment in incompatible elements in the mafic source, which extended the pressure-temperature field of plagioclase stability as a cogenetic melt phase. We interpret the 0.9 Ga rise to record increasing hydration of magmagenetic sites due to the general development of cold subduction systems, which would delay and/or suppress the saturation of plagioclase in hydrous magmagenetic sites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.