Identifying the decisive matches in international football tournaments is of great relevance for a variety of decision makers such as organizers, team coaches and/or media managers. This paper addresses this issue by analyzing the role of the statistical approach used to estimate the outcome of the game on the identification of decisive matches on international tournaments for national football teams. We extend the measure of decisiveness proposed by Geenens (2014) in order to allow us to predict or evaluate the decisive matches before, during and after a particular game on the tournament. Using information from the 2014 FIFA World Cup, our results suggest that Poisson and kernel regressions significantly outperform the forecasts of ordered probit models. Moreover, we find that although the identification of the most decisive matches is independent of the model considered, the identification of other key matches is model dependent. We also apply this methodology to identify the favorite teams and to predict the most decisive matches in 2015 Copa America before the start of the competition. Furthermore, we compare our forecast approach with respect to the original measure during the knockout stage.
This paper estimates the causal impact of investment in information and communication technologies (ICT) on student performances in mathematics as measured in the Program for International Student Assessment (PISA) 2012 for Spain. To do this we apply a new methodology in this context known as Bayesian Additive Regression Trees that has important advantages over more standard parametric specifications. Results indicate that ICT has a moderate positive effect on math scores. In addition, we analyze how this effect interacts with variables related to school features and student socioeconomic status, finding that ICT investment is especially beneficial for students from a low socioeconomic background
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.