This paper presents a study of performance optimization of dense matrix multiplication on IBM Cyclops-64(C64) chip architecture. Although much has been published on how to optimize dense matrix applications on shared memory architecture with multi-level caches, little has been reported on the applicability of the existing methods to the new generation of multi-core architectures like C64. For such architectures a more economical use of on-chip storage resources appears to discourage the use of caches, while providing tremendous on-chip memory bandwidth per storage area. This paper presents an in-depth case study of a collection of well known optimization methods and tries to re-engineer them to address the new challenges and opportunities provided by this emerging class of multi-core chip architectures. Our study demonstrates that efficiently exploiting the memory hierarchy is the key to achieving good performance. The main contributions of this paper include: (a) identifying a set of key optimizations for C64-like architectures, and (b) exploring a practical order of the optimizations, which yields good performance for applications like matrix multiplication.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.